Анафем

— Мы ими и пользуемся, — объяснил я, — но записываем числа в отдельные колонки. Тогда каждая строка таблицы содержит в себе всё, что нам нужно знать о системе бутылка-картофелина в данный момент времени. Каждая строка — двенадцать чисел, дающих нам х, у и z бутылки, её угол отлетания от пинка, угол чтения этикетки, угол наклона и всё то же самое для картофелины, — точка в двенадцатимерном конфигурационном пространстве. И теорам это становится полезным, например, когда мы соединяем точки и получаем траектории в конфигурационном пространстве.

— Когда ты говоришь «траектория», мне представляется что-то, летящее по воздуху, — ответил Барб. — Я не понимаю, что ты имеешь в виду, когда речь о двенадцатимерном пространстве, которое вовсе и не пространство.

— Давай упростим до предела. Будем двигать бутылку с картофелиной только по оси х и забудем про вращение.

Я положил их так:

— Можешь отметить у себя на доске их координаты по оси x?

— Конечно. — И через несколько секунд Барб показал мне такую табличку:

— Сейчас я их столкну. Медленно, конечно. Постарайся записывать координаты, если успеешь.

Я начал двигать картофелину и бутылку, останавливаясь и говоря: «Отмечай» всякий раз, как хотел, чтобы он добавил новую строчку к таблице.

— Бутылка движется быстрее, — заметил Барб.

— В два раза быстрее. — Я закончил тем, что в точке с координатой 3 положил картофелину на бутылку.

— Они столкнулись, — сказал я, — и теперь начнутся разлетаться, но медленно, потому что картошка при ударе смялась и часть энергии потеряна.

С небольшими моими подсказками Барб добавил к табличке ещё несколько строк.

— Вот, — сказал я, отпуская соударившиеся тела и вставая с корточек. — Всё происходило на прямой, то есть ситуация одномерная, если по-прежнему думать в координатах светителя Леспера. Однако светитель Гемн сделал бы сейчас вещь, которая покажется тебе странной. Гемн считал бы, что каждая строка таблицы задаёт точку в двумерном конфигурационном пространстве.

— То есть каждая пара чисел — точка, — перевёл Барб. — Начиная с (7,1) и так далее.

— Верно. Можешь построить мне график?

— Нет ничего проще.

— Ух ты! Мрак! — воскликнул Барб. — Как будто светитель Гемн вывернул всё наизнанку.

— Дай-ка мне на минуту мел, я подпишу график, чтобы тебе легче было разобраться, — сказал я.

Через несколько минут у нас получилось вот что:

— Линия соударений, — сказал я, — это просто множество всех точек, в которых бутылка и картофелина оказываются в одном месте — в котором их координаты равны.

Любой теор, глядя на твой график, сразу поймёт, что в этой линии есть что-то особенное, даже если ничего не знает про физическую ситуацию — бутылку, картофелину и пол. До линии состояние системы развивается упорядоченно и предсказуемо. Затем происходит нечто исключительное. Траектория круто поворачивает. Точки теперь расположены чаще, значит, тела движутся медленнее, а следовательно, система потеряла энергию. Я не жду, что ты придёшь в бурный восторг, но, надеюсь, теперь тебе понятно, почему теоры, когда думают о физических системах, предпочитают конфигурационное пространство.

— Тут должно быть что-то ещё, — сказал Барб. — Мы могли бы изобразить то же самое куда проще.

— Этот способ и есть самый простой, — возразил я. — Он ближе к истине.

— Ты про Гилеин теорический мир? — спросил Барб полушёпотом и с таким сладким замиранием голоса, будто мы делаем что-то ужасно запретное.

— Я эдхарианец, что бы некоторые ни думали. И, естественно, мы стараемся выразить свои мысли самым простым, самым изящным способом. Во многих и даже почти во всех интересных для теоров случаях конфигурационное пространство светителя Гемна лучше, чем пространство светителя Леспера с координатами х, y и z , в котором ты до сих пор вынужден был работать.

Барб вдруг кое-что сообразил:

— У бутылки и картофелины по шесть чисел — шесть координат в Гемновом пространстве.

— Да, как правило, чтобы описать позицию, нужны шесть чисел.

— И спутнику на орбите тоже нужны шесть чисел!

— Да, параметры орбиты. Спутнику на орбите всегда нужно шестимерное Гемново пространство, какой бы координатной системой ты ни пользовался. Если ты берёшь лесперовы координаты, возникает проблема, на которую ты жаловался раньше…

— Иксы, игреки и зеты ничего толком не говорят!

— Да. Но если ты перейдёшь в другое шестимерное пространство, с другими шестью числами, всё проясняется, как сценарий бутылка-картофелина прояснился, едва мы построили график в нужном пространстве. Для спутников эти шесть чисел — эксцентриситет, наклонение орбиты, аргумент перицентра и ещё три, которыми я не буду пока забивать тебе голову. Если взять только первые два, эксцентриситет показывает тебе, стабильна ли орбита. Наклонение — полярная она или экваториальная. И так далее.

Кальк 3. Сложный протесизм

Приложение к «Анафему» Нила Стивенсона

— Вот та схема с двумя квадратиками, которую мы все видели, — начал Крискан и нарисовал в пыли что-то примерно такое:

— Стрелка показывает, что объекты Гилеина теорического мира способны оказывать влияние на Арбскую причинно-следственную область, а она на них — нет. И если развернуть то, что люди подразумевают, рисуя эту схему, мы получим небольшой набор посылок, определяющий систему взглядов, которая зовётся протесизмом. Я знаю, что вам они прекрасно известны, но, с вашего позволения, кратко их перечислю, дабы убедиться, что мы начинаем с одного исходного места.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305