Скрытая реальность. Параллельные миры и глубинные законы космоса

Рис. 8.4. Описание движения электрона с помощью бегущей волны вероятности объясняет загадочный интерференционный узор в эксперименте с двумя щелями

 

Именно так квантовая теория объясняет полученные данные. То, что каждый электрон действительно «знает» о двух щелях, становится при таком описании явным, поскольку волна вероятности каждого электрона проходит сквозь обе щели. Именно объединение двух таких парциальных волн определяет вероятность того, куда попадёт электрон. Именно поэтому само наличие второй щели влияет на конечный результат.

Не так быстро!

Мы рассмотрели детально электроны, однако похожие эксперименты подтвердили, что такое же вероятностно-волновое описание справедливо для всех элементарных объектов в природе. Фотоны, нейтрино, кварки — любые фундаментальные частицы — все они описываются волнами вероятности. Но прежде чем праздновать победу, следует разрешить три неотложных вопроса. Два из них не вызывают затруднений. А один — весьма крепкий орешек. Именно последний вопрос рассматривал Эверетт в 1950-х годах, что привело его к квантовой версии параллельных миров.

Во-первых, если квантовая теория верна и мир развивается вероятностно, тогда почему невероятностный подход Ньютона так хорошо предсказывает движение тел, от бейсбольных мячей до планет и звёзд? Ответ на этот вопрос такой: волны вероятности для крупных объектов, как правило (но не всегда, как мы скоро убедимся), имеют очень специальный вид. Как показано на рис. 8.5а, у них очень узкий профиль, что означает огромную вероятность — чуть менее 100 процентов, — что объект будет находиться в точке самого пика волны, и совершенно ничтожную вероятность, чуть более 0 процентов, что он окажется где-то в другом месте. Более того, квантовые законы показывают, что пики таких узких волн движутся по траекториям, которые возникают из уравнений Ньютона. Поэтому квантовая теория лишь минимально уточняет ньютоновские законы, задающие точную траекторию бейсбольного мяча, говоря, что существует почти 100-процентная вероятность падения мяча в место, вычисленное на основе уравнений Ньютона, и почти 0-процентная вероятность того, что он упадёт в другое место.

На самом деле, слова «чуть менее» и «почти» характеризуют физику не с лучшей стороны. Возможность отклонения движения макроскопического тела от предсказываемого ньютоновскими законами настолько фантастически мала, что если бы вы вели астрономические наблюдения в течение последних нескольких миллиардов лет, то с подавляющей долей вероятности ничего подобного бы не обнаружили. Однако, согласно квантовой механике, чем меньше объект, тем, как правило, более размазана его волна вероятности. Например, типичная волна электрона может выглядеть так, как показано на рис. 8.5б, когда есть несколько местоположений, где частица может находиться с существенной вероятностью, — что совершенно чуждо ньютоновской концепции мира. Поэтому именно в микромире вероятностная природа реальности выходит на первый план.

Рис. 8.5. а) Волна вероятности макроскопического объекта, как правило, имеет очень узкий пик; б) Волна вероятности микроскопического объекта, например частицы, как правило, широко размазана

 

Во-вторых, можем ли мы видеть волны вероятности, составляющие основу квантовой механики? Существует ли какой-нибудь прямой способ пощупать этот непривычный вероятностный туман, как тот, что изображён на рис. 8.5б, когда единственная частица имеет шанс оказаться во множестве положений? Нет. Из стандартного описания квантовой механики, развитого Бором и его группой и названного в их честь копенгагенской интерпретацией, следует, что если вы захотите увидеть волну вероятности, то сам акт наблюдения разрушит ваши планы. Когда вы смотрите на волну вероятности электрона, то слово «смотрите» означает «измеряете его положение», электрон моментально реагирует на это и занимает какое-то выделенное положение. Соответственно, его волна вероятности поднимается в этом месте до 100 процентов, а во всех остальных коллапсирует до 0 процентов (рис. 8.6). Отвернитесь от него, и пикообразный вид волны вероятности электрона быстро расплывётся, извещая о том, что снова имеется шанс обнаружить электрон во множестве мест. Снова посмотрите на электрон, его волна заново схлопнется, перераспределяясь из множества возможных положений в какое-то одно определённое место. Вкратце говоря, каждый раз, когда вы пытаетесь взглянуть на вероятностный туман, он рассеивается — схлопывается, коллапсирует — и замещается привычной реальностью. Экран детектора на рис. 8.2в демонстрирует как раз это явление: он измеряет падающую волну вероятности электрона, и таким образом немедленно заставляет её схлопнуться. Детектор заставляет электрон отказаться от множества допустимых мест его попадания и определиться с каким-нибудь конкретным местом, которое впоследствии станет крохотной точкой на экране.

Рис. 8.6. Согласно копенгагенскому описанию квантовой механики, при измерении или наблюдении волны вероятности частицы она мгновенно коллапсирует везде, кроме одной точки. Из всего множества возможных местоположений остаётся одно выделенное положение

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159