Скрытая реальность. Параллельные миры и глубинные законы космоса

Тем не менее одно важное открытие пролило свет на теорию чёрных дыр. В 1970-х годах в работах Якоба Бекенштейна и Стивена Хокинга было установлено, что чёрные дыры обладают определённой степенью беспорядка, известной как энтропия (см. главу 9). Подобно тому как беспорядок, царящий в ящике для носков, отражает множество способов их случайного расположения, так и беспорядок внутри чёрной дыры, согласно фундаментальным физическим законам, свидетельствует о множестве вариантов случайного размещения её внутренностей. Однако даже после долгих усилий физикам не удалось достаточно хорошо разобраться в том, как устроены внутренности чёрных дыр, не говоря уж о том, чтобы проанализировать возможные способы их размещения. Струнные теоретики Эндрю Строминджер и Кумрун Вафа вырвались из этого тупика. Смешав фундаментальные ингредиенты теории струн (с некоторыми из них мы встретимся в главе 5), они построили математическую модель беспорядка чёрной дыры, достаточно простую и понятную, чтобы извлечь из неё численное значение энтропии. Полученный результат в точности совпал с ответом Бекенштейна и Хокинга. Хотя осталось много открытых вопросов (например, точная идентификация составляющих чёрной дыры), эта работа стала первым надёжным квантово-механическим анализом беспорядка чёрной дыры.

Замечательный прогресс в изучении сингулярности чёрной дыры и её энтропии привёл физическую общественность к обоснованной убеждённости, что со временем оставшиеся трудности, связанные с чёрными дырами и Большим взрывом, будут преодолены.

Теория струн и математика

Сравнение с экспериментальными или наблюдательными данными является единственным способом определить, правильно ли теория струн описывает природу. Но эта цель оказалась труднодостижимой. Несмотря на все успехи теории струн, она остаётся исключительно математической конструкцией. Но было бы неправильным считать теорию струн простым потребителем математических идей. Наоборот, некоторые важные струнные достижения являются вкладом в развитие математики.

Как известно, работая над созданием общей теории относительности, Эйнштейн перерыл всю математическую литературу, пытаясь найти строгий язык описания искривлённых пространств. Более ранние математические достижения таких математиков, как Карл Фридрих Гаусс, Бернхард Риман и Николай Лобачевский, подвели под общую теорию относительности крепкий фундамент. В некотором смысле, сейчас теория струн помогает выплатить интеллектуальный долг Эйнштейна, подталкивая развитие новых математических направлений. Тому есть много примеров, но я приведу лишь один, который целиком отражает суть струнных открытий в математике.

В общей теории относительности выстроена прочная связь между геометрией пространства-времени и наблюдаемой физикой. Уравнения Эйнштейна, дополненные распределением материи и энергии в некоторой заданной области, определяют конечную форму пространства-времени. Различные физические условия (то есть различные конфигурации масс и энергии) приводят к различной форме пространства-времени; разные виды пространства-времени соответствуют физически различным условиям. Хотите узнать, каково это — падать в чёрную дыру? Проведите вычисления на основе пространственно-временной геометрии, открытой Карлом Шварцшильдом при изучении сферических решений уравнений Эйнштейна. А что если чёрная дыра быстро вращается? Тогда вычисляйте с помощью геометрии, открытой в 1963 году новозеландским математиком Роем Керром. Геометрия и физика в общей теории относительности подобны инь и ян.

Теория струн резко меняет подобное заключение, утверждая, что могут быть различные формы пространства-времени, приводящие, тем не менее, к физически неотличимым описаниям реальности.

Это можно осмыслить следующим образом. Начиная с античных времён и до эры современной математики, геометрические пространства рассматриваются как набор точек. Например, мячик для пинг-понга состоит из точек, составляющих его поверхность. До теории струн базовые конституэнты вещества также считались точками, точечными частицами, и такая общность основных ингредиентов говорила о согласованности между геометрией и физикой. Однако в теории струн основным объектом является не точка. Это струна. Отсюда следует, что с теорией струн должен быть связан новый тип геометрии, основанный не на точках, а на петлях. Эта новая геометрия получила название струнной геометрии.

Чтобы ощутить струнную геометрию, вообразите струну, которая движется в геометрическом пространстве. Заметим, что зачастую струна может вести себя как точечная частица, невинно скользя туда-сюда, сталкиваясь со стенками, взбираясь на горки и опускаясь в долины, и так далее. Но в определённых ситуациях струна способна на нечто новое. Представьте, что пространство (либо его часть) имеет форму цилиндра. Струна может навиться вокруг него, подобно резиновому колечку, натянутому на банку с газировкой, — такая конфигурация в принципе невозможна для точечной частицы. Такие «намотанные» струны и их «ненамотанные» коллеги прощупывают геометрическое пространство разными способами. Если цилиндр станет толще, то намотанная на него струна ответит растяжением, а ненамотанная струна, скользящая по его поверхности, ничего не заметит. Следовательно, намотанные и ненамотанные струны по-разному чувствуют проявления формы пространства, в котором они движутся.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159