Скрытая реальность. Параллельные миры и глубинные законы космоса

Когда речь заходит о предсказании того, где упадёт бейсбольный мяч или как электрон пройдёт сквозь компьютерный чип (или модель Манхэттена), эта трёхшаговая процедура демонстрирует очевидную силу. Однако при описании реальности в целом, эти три шага наталкивают нас на более глубокие вопросы: можем ли мы объяснить начальные данные — то, как вещи устроены в самый начальный момент? Можем ли мы объяснить значения констант — массы частиц, силу взаимодействий и так далее, — от которых эти законы зависят? Можем ли мы объяснить, почему определённый набор математических уравнений описывает ту или иную грань физической вселенной?

Те модели мультивселенной, которые мы обсуждали, могут значительно повлиять на наше осмысление этих вопросов. В лоскутной мультивселенной мы имеем одинаковые физические законы внутри разных вселенных, но разные конфигурации частиц. Разные конфигурации частиц в настоящем отражают разные начальные условия в прошлом. Поэтому в рамках этой модели мультивселенной наш подход к вопросу, почему начальные условия в нашей Вселенной были такими или другими, меняется. Начальные условия могут и, как правило, действительно варьируются от вселенной к вселенной, поэтому нет какого-либо фундаментального объяснения того, что наблюдается та или иная конфигурация частиц. Требовать объяснения этому — это неправильно ставить вопрос; это привлекать логику одной единственной вселенной в контексте мультивселенной. Вопрос следует ставить так: есть ли где-нибудь на просторах мультивселенной вселенная, конфигурации частиц внутри которой и, следовательно, начальные условия, согласуются с теми, что мы здесь видим. А лучше всего спросить, можем ли мы показать, что таких вселенных много? Если да, то на глубокий вопрос о начальных условиях можно будет просто пожать плечами — в такой мультивселенной требовать объяснения начальных условий в нашей Вселенной — это всё равно что требовать объяснить то, что где-то в Нью-Йорке есть обувной магазин, в котором продаётся обувь вашего размера.

В инфляционной мультивселенной фундаментальные «константы» природы могут и, как правило, варьируются от одной дочерней вселенной, возникающей из пузырька, к другой. Вспомним из главы 3, что различие в условиях — разные значения поля Хиггса, пронизывающего каждый пузырёк, — приводят к различным массам частиц и свойствам взаимодействий. То же самое справедливо для бранной мультивселенной, циклической мультивселенной и ландшафтной мультивселенной, где разная форма дополнительных измерений в теории струн вместе с различиями в полях и потоках приводят ко вселенным с разными свойствами, такими как масса электрона, если он вообще существует, величина электромагнитного взаимодействия, если оно есть, значение космологической постоянной и так далее. В контексте этих мультивселенных вопрос об объяснении измеряемых свойств частиц и взаимодействий опять же является неправильным вопросом; это вопрос, порождённый логикой одной единственной Вселенной. Наоборот, следует задаться вопросом о том, есть ли в одной из этих мультивселенных такая вселенная, физические свойства которой совпадают с измеряемыми нами на опыте. А лучше было бы показать, что вселенных с нашими физическими свойствами много, или, по крайней мере, их много среди тех вселенных, которые поддерживают жизнь в известном нам виде. Но подобно тому, как бессмысленно спрашивать о том, каким единственным словом написана «Леди Макбет» Шекспира, также бессмысленно требовать от уравнений выделить те значения физических свойств, которые мы наблюдаем в нашей Вселенной.

Смоделированная и окончательная мультивселенные — это лошадки другой масти; эти мультивселенные не возникают из каких-либо определённых физических теорий. Однако у них тоже есть потенциал для изменения характера наших вопросов. Математические законы, управляющие отдельными вселенными в этих мультивселенных, варьируются. Таким образом, подобно варьированию начальных условий и фундаментальных констант, варьирование законов лишает смысла вопрос о том, почему здесь действует тот или иной закон. Разные вселенные имеют разные законы; у нас действуют те законы, которые действуют, потому что они среди тех, которые не противоречат нашему существованию.

В общем и целом мы видим, что модели мультивселенных, собранные в табл. 11.1, сводят к прозе три первостепенных вопроса стандартного научного подхода, которые кажутся глубоко мистическими в одновселенном подходе. Начальные условия, фундаментальные константы и даже математические законы в разных мультивселенных больше не нуждаются в объяснении.

Следует ли доверять математике?

Нобелевский лауреат Стивен Вайнберг однажды написал: «Наша ошибка не в том, что мы слишком серьёзно воспринимаем наши теории, а в том, что мы недостаточно серьёзно к ним относимся. Всегда тяжело осознавать, что числа и уравнения, с которыми мы играемся на письменном столе, имеют какое-то отношение к реальному миру». Вайнберг имел в виду пионерские результаты Ральфа Альфера, Роберта Германа и Георгия Гамова по реликтовому излучению, описанные в главе 3. Хотя предсказанное излучение является прямым следствием общей теории относительности и принятой космологической физики, о нём стали говорить только после повторного теоретического открытия, через дюжину лет, и после его счастливого экспериментального наблюдения.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159