Скрытая реальность. Параллельные миры и глубинные законы космоса

88

В настоящее время есть разные точки зрения, насколько трудна эта задача. Некоторые рассматривают проблему измерения как хитроумный технический трюк, который в случае успешного решения станет важным дополнением инфляционной космологии. Другие (например, Пол Стейнхард) считают, что решение проблемы измерения потребует выхода далеко за рамки математического формализма инфляционной космологии, что приведёт к новому подходу, который должен будет рассматриваться как новая космологическая теория. Моя личная точка зрения, которую разделяют немногие, но их число постоянно растёт, состоит в том, что проблема измерения уходит корнями на самый глубокий фундаментальный уровень, и её решение может потребовать серьёзного пересмотра основополагающих идей.

89

Оригинальную версию 1956 года и урезанную версию 1957 года диссертации Эверетта можно найти в книге Брайса ДеВитта: «The Many-Worlds Interpretation of Quantum Mechanics», edited by Bryce S. DeWitt & Neill Graham. Princeton: Princeton University Press, 1973.

90

27 января 1998 года я обсуждал с Джоном Уилером аспекты квантовой механики и общей теории относительности, которые я собирался описать в «Элегантной Вселенной». Прежде чем углубиться в науку, Уилер отметил, насколько важно, особенно для молодых теоретиков, найти правильный способ представления своих результатов. В тот момент я воспринял это как не более чем мудрый совет, возможно, побуждённый его разговором с мной, «молодым теоретиком», проявившим интерес к описанию математических достижений на обычном языке. Однако, читая поучительную историю, изложенную в книге Питера Бирна: Peter Byrne, «The Many Worlds of Hugh Everett III». New York: Oxford University Press, 2010, я был поражён тем, что Уилер также акцентировал эту тему примерно сорок лет назад в его общении с Эвереттом, только в ситуации, где ставки были гораздо выше. Комментируя черновой вариант диссертации Эверетта, Уилер сказал, что надо «подчистить слова, не формализм», и предупредил о «сложности использования обычных слов для описания математического формализма, который удалён от обычной жизни настолько, насколько это вообще возможно; о противоречиях и недопониманиях, которые могут возникнуть; об очень и очень тяжёлой ноше ответственности, с которой следует делать все утверждения, так чтобы эти недопонимания не могли возникнуть». Бирн убедительно свидетельствует, что Уилер балансировал на тонкой грани между восхищением работой Эверетта и уважением к квантово-механическому подходу, над которым трудились Бор и много других знаменитых физиков. С одной стороны, он не хотел, чтобы идеи Эверетта бесцеремонно были принижены старой гвардией только потому, что Эверетт выбрал неудачную форму для презентации или потому что эмоциональные слова (вроде «расщепляющиеся» вселенные) могут резануть своей новомодностью. С другой стороны, Уилер не хотел, чтобы почтенное физическое сообщество подумало, будто он является инициатором ничем не оправданной атаки на успешный квантовый формализм. Относительно Эверетта и его диссертации Уилер предложил компромисс, что развитый математический формализм должен быть сохранён, но трактовка и приложения должны быть облечены в более мягкую форму. В то же время, Уилер настоятельно побуждал Эверетта съездить к Бору и изложить свои доводы лично, у доски. В 1959 году Эверетт так и поступил, однако то, что ему виделось как двухнедельные разносторонние обсуждения, свелось к нескольким непродуктивным разговорам. Никто не изменил своего мнения; позиции остались прежними.

91

Позвольте пояснить одну неточность. Из уравнения Шрёдингера следует, что значения, которые может принимать квантовая волна (или, на языке полей, волновая функция) могут быть положительными и отрицательными; в общем случае, эти значения могут быть комплексными числами. Такие числа не могут быть напрямую интерпретированы как вероятности — что означает отрицательная или комплексная вероятности? Вероятности ассоциируются с квадратом амплитуды квантовой волны в данной точке. Математически это означает, что для определения вероятности нахождения частицы в данной точке мы перемножаем значение волны в этой точке с его комплексно сопряжённым значением. Это пояснение также важно для понимания следующего вопроса. Сокращения между перекрывающимися волнами необходимы для появления интерференционной картины. Но если бы волны действительно описывались как волны вероятности, такие сокращения не происходили бы, потому что вероятности являются положительными числами. Однако, как мы теперь знаем, квантовые волны принимают не только положительные значения; благодаря этому и происходят сокращения между положительными и отрицательными числами, а в общем случае, между комплексными числами. Поскольку нам важны только качественные свойства таких волн, для упрощения обсуждения в основном тексте я не буду различать квантовые волны и связанные с ними волны вероятности (получаемые путём возведением амплитуды в квадрат).

92

Для математически подготовленного читателя заметим, что квантовая волна (волновая функция) одной частицы с большой массой будет описываться так, как это указано в основном тексте. Однако очень массивные объекты, как правило, состоят из многих частиц. В такой ситуации квантово-механическое описание более сложное. Вы могли бы подумать, что все частицы будут описываться квантовой волной, определённой на той же сетке координат, которая использовалась для одной частицы — с помощью тех же трёх пространственных осей. Но это не так. Волна вероятности использует в качестве начальных данных возможное положение каждой частицы и задаёт вероятность нахождения частиц в этих положениях. Следовательно, волна вероятности живёт в пространстве с тремя осями для каждой из частиц — то есть общее количество осей будет в три раза больше количества частиц (или в десять раз больше количества частиц, если учитывать дополнительные измерения теории струн). Это означает, что волновая функция составной системы, состоящей из n фундаментальных частиц, будет являться комплекснозначной функцией, определённой не на обычном трёхмерном пространстве, а на 3n-мерном пространстве; если число пространственных измерений не 3, а m, то число 3 в этом выражении будет заменено на m. Такое пространство называется конфигурационным. То есть в общем случае, волновая функция будет отображением ?:
. Когда мы говорим, что волновая функция имеет острый пик, мы имеем в виду, что это отображение определено на небольшом mn-мерном шаре внутри области определения. Отметим, в частности, что волновая функция, как правило, определена не в привычном пространстве. Конфигурационное пространство совпадает с привычным нам пространством только в идеализированном случае волновой функции одной, полностью изолированной, частицы. Ещё заметим, что когда говорится, что квантовые законы гарантируют распространение остролокализованной волновой функции массивного объекта по траектории, которую задают уравнения Ньютона, можно представлять себе, что волновая функция описывает движение центра масс данного объекта.

93

Из этого описания вы можете сделать вывод, что существует бесконечно много местоположений, где может находиться электрон: для заполнения плавно меняющегося волнового профиля квантовой волны понадобится бесконечное число пикообразных форм, каждая из которых ассоциирована с возможным положением электрона. Как это стыкуется с главой 2, в которой мы обсуждали конечное число различных конфигураций частиц? Во избежание постоянных оговорок, не имеющих важного значения для основного изложения этой книги, я не стал заострять внимание на факте (указанном в главе 2), что для всё более точного определения положения электрона измерительный прибор будет тратить всё больше энергии. Поскольку в реальных ситуациях энергия ограничена, то разрешение прибора не идеально. Для пикообразных квантовых волн это означает, что при любой конечной энергии у пиков имеется отличная от нуля ширина. В свою очередь это означает, что в любой ограниченной области (например, внутри космического горизонта) существует конечное число различных измеряемых положений электрона. Более того, чем тоньше пик (более точное разрешение положения частицы), тем шире квантовая волна, описывающая энергию частиц, что демонстрирует обусловленный принципом неопределённости компромисс между характеристиками частицы.

94

Для читателя с философским складом ума замечу, что описанная выше двухъярусная картина научного объяснения была предметом философских обсуждений и споров. Смежные идеи и обсуждения можно найти в работах: Frederick Suppe, «The Semantic Conception of Theories and Scientific Realism». Chicago: University of Illinois Press, 1989; James Ladyman, Don Ross, David Spurrett, & John Collier, «Every Thing Must Go». Oxford: Oxford University Press, 2007.

95

Физики часто довольно свободно говорят о бесконечном количестве вселенных в контексте многомирового подхода к квантовой механике. Безусловно, существует бесконечно много форм возможных волн вероятности. Даже в одной и той же точке пространства можно непрерывным образом изменять значение волны вероятности, и поэтому число принимаемых ею значений будет бесконечным. Однако волны вероятности не являются физическими характеристиками системы, к которым у нас есть прямой доступ. Наоборот, волны вероятности содержат информацию о возможных различных исходах в заданной ситуации, а их не обязательно бесконечное число. В частности, подготовленный читатель заметит, что квантовая волна (волновая функция) находится в гильбертовом пространстве. Если данное гильбертово пространство конечномерно, то имеется конечное число разных возможных результатов измерений в физической системе, задаваемой этой волновой функцией (то есть любой эрмитов оператор имеет конечное число различных собственных значений). Это приведёт к конечному числу миров для конечного числа наблюдений или измерений. Считается, что гильбертово пространство, ассоциированное с физическими явлениями, происходящими внутри пространства конечного объёма и с ограниченной энергией, является с необходимостью конечномерным (мы остановимся на этом более подробно в главе 9), откуда следует, что число миров также будет конечно.

96

См.: Peter Byrne, «The Many Worlds of Hugh Everett III». New York: Oxford University Press, 2010, p. 177.

97

В разное время многие учёные, включая Нила Грахама; Брайса де Витта; Джеймса Хартли; Эварда Фархи, Джефри Голдстоуна и Сэма Гутмана; Дэвида Дойча; Сидни Коулмена; Дэвида Альберта и других, включая меня самого, независимо обнаружили удивительный математический факт, который, по видимому, является центральным для понимания природы вероятности в квантовой механике. Приведём его формулировку для математически подготовленного читателя: пусть ? — волновая функция квантово-механической системы — вектор, являющийся элементом гильбертова пространства H. Волновая функция для n тождественных копий системы имеет, таким образом, вид
. Пусть A — это произвольный эрмитов оператор с собственными значениями ? и собственными функциями
. Пусть F(A) — это оператор «частоты», который подсчитывает число раз, которое
появляется в данном состоянии, принадлежащем
. Тогда имеем следующий математический результат:

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159