Скрытая реальность. Параллельные миры и глубинные законы космоса

Это наблюдение крайне интересно, потому что приводит к поразительному и совершенно неожиданному выводу. Струнные теоретики обнаружили специальные пары геометрических форм пространства, проявляющие совершенно разные свойства, когда их прощупывают с помощью ненамотанных струн. Они также проявляют совершенно разные свойства при их тестировании намотанными струнами. При этом — тут наступает кульминационный момент — при тестировании струнами обоих типов, намотанными и ненамотанными, эти пространства становятся неразличимы. То, что намотанные струны видят в одном пространстве, ненамотанные видят в другом, и наоборот, что приводит к одинаковой коллективной картине, составленной на основе полной физики теории струн.

Такие парные формы являются мощным математическим инструментом. Если в общей теории относительности вы интересуетесь тем или иным свойством, то следует выполнить математические расчёты, привлекая то единственное геометрическое пространство, возникающего в изучаемой системе. Но в теории струн существование пар физически эквивалентных геометрических форм означает, что у вас появился выбор: проводить вычисления можно с помощью любой формы. Совсем удивительно, что при гарантированно одинаковых ответах для любой формы математические выкладки по пути к ответу могут быть совершенно разными. Во многих ситуациях крайне трудные математические вычисления для одной геометрической формы становятся более чем простыми для другой. При этом понятно, что любой математический аппарат, позволяющий упростить сложные математические расчёты, имеет огромную ценность.

В течение многих лет физики и математики достаточно продуктивно пользовались этим словариком по переводу сложного в простое для продвижения вперёд в решении ряда важных математических проблем. Одна такая задача, которую я особенно люблю, посвящена подсчёту числа сфер, которые можно упаковать (некоторым специальным математическим способом) в заданное пространство Калаби–Яу. В течение долгого времени математики интересовались этим вопросом, но вычисления во всех случаях, кроме простейших, были непреодолимыми. Возьмите пространство Калаби–Яу, показанное на рис. 4.6. Если упаковывать сферу в это пространство, она может много раз намотаться на часть пространства Калаби–Яу, подобно тому как лассо может много раз намотаться на пивную бочку. Итак, сколько существует способов упаковать сферу в данное пространство, если сфера наматывается, скажем, пять раз? Услышав такой вопрос, математик должен кашлянуть, бросить мельком взгляд на свои ботинки и быстро удалиться, сославшись на неотложную встречу. Теория струн сгладила остроту вопроса. Переводя вычисления со сложного на простое пространство из пары Калаби–Яу, струнные теоретики получили ответы, которые огорошили математиков. Каково число пятикратно намотанных сфер, упакованных в пространство Калаби–Яу на рис. 4.6? 229 305 888 887 625. А если сфера намотана десять раз? 704 288 164 978 454 686 113 488 249 750. Двадцать раз? 53 126 882 649 923 577 113 917 814 483 472 714 066 922 267 923 866 451 936 000 000. Эти числа стали предвестниками целого спектра результатов, открывших новую главу в математике.

Итак, независимо от того, правильно теория струн описывает физическую Вселенную или нет, она уже проявила себя в качестве мощного инструмента исследований вселенной математической.

Современный статус теории струн

Информация из предыдущих четырёх глав собрана в табл. 4.2, которая является своеобразным отчётом о состоянии теории струн. Также она включает некоторые дополнительные данные, на которых я подробно не останавливался. Эта картина описывает теорию в её развитии, которая уже добилась ошеломляющих результатов, но до сих пор лишена самого важного: экспериментального подтверждения. Она так и будет оставаться умозрительной до тех пор, пока не будет установлена убедительная связь с экспериментом или наблюдениями. Поиск такой связи является важнейшей задачей. Однако заметим, что такая ситуация характерна не только для теории струн. Любая попытка объединить гравитацию и квантовую механику выводит в область, находящуюся далеко за пределами современных возможностей экспериментальных исследований. Это неизбежно, когда ставятся такие в высшей степени амбициозные цели. Расширение границ фундаментальных знаний в поиске ответов на самые глубокие вопросы, занимающие умы человечества последние несколько тысячелетий, является выдающимся проектом, который вряд ли удастся быстро осилить. Скорее всего, не хватит даже десятилетий.

Таблица 4.2. Краткий отчёт о состоянии теории струн

 

Оценивая текущей статус теории струн, многие струнные теоретики считают, что следующий важный шаг состоит в том, чтобы придать уравнениям теории наиболее полный и точный вид. Большая часть исследований на протяжении первых двух десятилетий развития теории до середины 1990-х годов была выполнена с помощью приближённых уравнений, ибо многие полагали, что так можно выявить общие свойства теории. Однако приближённые уравнения оказались слишком грубы, чтобы дать точные предсказания. Последние открытия, к которым мы сейчас перейдём, вывели понимание на уровень, намного превосходящий тот, что был достигнут приближёнными методами. Хотя определённые предсказания сделать сложно, открылись новые перспективы. Они опираются на достижения в области удивительных возможных приложений теории, к которым относятся и новые типы параллельных миров.

Глава 5. Вселенные по соседству в других измерениях
Брана и циклические мультивселенные

Однажды, много лет назад я сидел поздно вечером в своём офисе в Корнелльском университете, придумывая на утро экзаменационные задачи для первокурсников. Это была группа отличников, и я решил разнообразить экзамен, добавив в список задач одну посложнее. Однако было поздно, я проголодался, поэтому вместо того чтобы аккуратно подобрать сложную задачку, я взял стандартную, с которой большинство из них уже встречались, быстро изменил некоторые условия, внёс её в экзаменационные билеты и направился домой. (Опуская подробности, в задаче рассматривалось движение лестницы, прислонённой к стене, которая скользит, а потом теряет опору и падает. Я изменил стандартные условия, добавив, что плотность лестницы изменяется по длине.) На следующее утро, во время экзамена, я стал решать задачи и обнаружил, что это скромное изменение условий сделало простую задачу трудно решаемой. Решение исходной задачи вполне уместилось бы на полстраницы. А решение этой заняло все шесть. У меня крупный почерк. Но смысл вам ясен.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159