Скрытая реальность. Параллельные миры и глубинные законы космоса

В эпоху современного научного знания интерес к циклическим моделям возобновился с развитием общей теории относительности. Александр Фридман в популярной книге, вышедшей в СССР в 1923 году, отмечал, что некоторые из найденных им космологических решений гравитационных уравнений Эйнштейна могут быть осмыслены как осциллирующая вселенная, которая расширяется, достигает максимального размера, затем сжимается, схлопывается в «точку», после чего опять начинает расширяться. В 1931 году Эйнштейн, отказавшись к тому моменту от идеи статичной вселенной, также исследовал возможность осциллирующей вселенной. Но самой обстоятельной была серия статей, опубликованных в период с 1931 по 1934 год Ричардом Толманом из Калифорнийского технологического института. Толман провёл подробное математическое исследование циклических космологических моделей, что дало начало целому потоку работ в этом направлении — иногда пересыхавшему до тонкого ручейка, иногда становившемуся бурной рекой, — который не прекращается по сей день.

Частично привлекательность циклической космологии состоит в том, что ей очевидно удаётся избегать сложного вопроса о происхождении Вселенной. Если Вселенная переходит из цикла в цикл, и если циклы никогда не прекращались (и, возможно, никогда не прекратятся), то вопрос о том, как всё началось, теряет свою актуальность. Каждый цикл имеет своё начало, но в циклической теории этому имеется конкретная физическая причина — окончание предыдущего цикла. Если спросить о начале всех циклов Вселенной, то ответ будет, что такого начала просто нет, потому что циклы повторяются бесконечно.

Поэтому в фигуральном смысле циклические модели являются перепевом присказки «и волки сыты, и овцы целы». Если вернуться назад, в первые годы научной космологии, то мы увидим, что в теории стационарной вселенной был свой собственный обходной манёвр, чтобы избежать ответа на вопрос о происхождении космоса. Утверждалось, что, несмотря на постоянное расширение Вселенной, у этого процесса не было начала: при расширении Вселенной постоянно возникает новая материя, заполняющая дополнительное пространство, что гарантирует постоянство условий во всём космосе навечно. Однако теория стационарной вселенной противоречит астрономическим наблюдениям, прямо указывающим на ранние эпохи, условия в которых заметно отличались от современных. Самыми критическими оказались наблюдения, показавшие, что ранняя космологическая фаза была далека от стационарности и равновесия, вместо этого она была хаотичной и неустойчивой. Большой взрыв разрушает мечту о стационарной вселенной, поэтому вопрос о происхождении космоса выходит на первый план. Именно тут циклическая космология является убедительной альтернативой. Каждый цикл может включать Большой взрыв как часть прошлого, что нисколько не противоречит астрономическим наблюдениям. Однако, описывая бесконечное число циклов, теории не требуется предъявить начало всех начал. Таким образом, циклическая космология вобрала в себя наиболее привлекательные свойства теории стационарной вселенной и теории Большого взрыва.

Позже, в 1950-х годах, голландский физик Герман Занстра привлёк внимание к противоречию в циклических моделях, которое неявно присутствовало в работах Толмана двадцатью годами ранее. Занстра показал, что циклу нашей Вселенной не могло предшествовать бесконечное число циклов. Проблема кроется во втором законе термодинамики. Этот закон, более подробно обсуждаемый в главе 9, говорит, что беспорядок — энтропия — возрастает со временем. Мы наблюдаем это каждый день. Прибранная утром кухня к вечеру требует новой уборки; то же самое происходит с бельём в платяном шкафу, на письменном столе и в комнате для отдыха. В этих каждодневных ситуациях возрастание энтропии — лишь досадная мелочь, но в циклической космологии оно имеет решающее значение. Толман тоже понимал, что из уравнений общей теории относительности вытекает связь между энтропией Вселенной и продолжительностью данного цикла. Чем больше энтропия, тем больше неупорядоченных частиц сдавливаются при схлопывании Вселенной; это приводит к более мощному последующему взрыву, пространство расширяется сильнее, и поэтому цикл длится дольше. Если оглянуться назад, то окажется, что благодаря второму закону термодинамики более ранние циклы обладали меньшей энтропией (из второго закона термодинамики следует, что энтропия возрастает по направлению в будущее, а по направлению в прошлое обязательно убывает), и поэтому каждый предыдущий цикл был короче. Проведя соответствующие математические вычисления, Занстра показал, что в достаточно удалённом прошлом циклы настолько укорачивались, что должны были прекратиться. Иными словами, у последовательности циклов должно было быть начало.

Стейнхард и компания утверждают, что их новая версия циклической космологии избегает этой ловушки. В рамках их подхода циклы возникают не из-за того, что Вселенная расширяется, сжимается и снова расширяется, а потому что пространство, разделяющее миры на бранах, расширяется, сжимается и вновь расширяется. Сами по себе браны постоянно расширяются — этот процесс происходит во всех циклах. Как того требует второй закон термодинамики, энтропия возрастает от одного цикла к другому, но из-за расширения бран энтропия распределяется по постоянно растущему пространственному объёму. Полная энтропия возрастает, но её плотность уменьшается. К концу каждого цикла энтропия настолько разбавляется, что её плотность практически обнуляется, то есть происходит полный возврат к начальному состоянию. И поэтому, в отличие от теории Толмана и Занстры, циклы могут продолжаться бесконечно в направлении как будущего, так и прошлого. У бранной циклической мультивселенной нет необходимости иметь начало во времени.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159