Скрытая реальность. Параллельные миры и глубинные законы космоса

С более современных позиций эти бесконечности рассматриваются несколько иначе. Физики осознали, что на пути к более глубокому пониманию законов природы разумно придерживаться той точки зрения, что любая теория приблизительна — если вообще значима — и скорее всего может описывать физические явления только вплоть до некоторого определённого масштаба (или только до некоторого энергетического масштаба). Явления за его пределами не могут описываться данной теорией. Согласно этой точке зрения, безрассудно применять данную теорию на расстояниях, меньших чем область применимости теории (или на энергиях, превышающих область применимости). С учётом таких встроенных отсеканий (подобно тем, что описаны в основном тексте) бесконечности никогда не будут возникать. Наоборот, все вычисления проводятся в теории, диапазон применимости которой обозначен с самого начала. Это означает, что предсказательная сила ограничена явлениями, находящимися в установленных теорией пределах, а на очень коротких расстояниях (больших энергиях) теория не работает. Окончательная цель полной теории квантовой гравитации состоит в устранении встроенных пределов и распространении предсказательной силы теории на произвольные масштабы.

38

Чтобы понять, откуда берутся эти конкретные числа отметим, что квантовая механика (см. главу 8) сопоставляет частице волну, и чем тяжелее частица, тем короче длина волны (расстояние между последовательными гребнями). Общая теория относительности Эйнштейна также сопоставляет длину произвольному объекту — это размер, до которого надо сжать объект, чтобы он стал чёрной дырой. Чем тяжелее объект, тем больше этот размер. А теперь возьмите частицу, которая описывается квантовой механикой, и представьте, что её масса медленно растёт. При этом квантовая волна частицы укорачивается, а её «размер чёрной дыры» увеличивается. При некоторой массе квантовая длина волны и размер чёрной дыры совпадут, что задаст тот уровень массы и размера, при котором квантово-механические и гравитационные рассмотрения одновременно важны. При проведении численной оценки такого мысленного эксперимента масса и размер оказываются равными тем значениям, которые озвучены в основном тексте — планковской массе и планковской длине соответственно. Забегая вперёд, скажу, что в главе 9 мы будем обсуждать голографический принцип. Основываясь на общей теории относительности и физике чёрных дыр, этот принцип утверждает, что существует очень определённое ограничение на количество физических степеней свободы, которые могут существовать внутри произвольной области пространства (это более точная версия рассуждений из главы 2 относительно количества различных конфигураций частиц в заданном объёме пространства; это также обсуждается в комментарии ). Если этот принцип верен, то конфликт между общей теорией относительности и квантовой механикой может возникнуть прежде, чем расстояния станут малыми, а кривизны большими. Огромный объём пространства, заполненный газом частиц даже малой плотности, будет обладать, согласно квантовой теории, значительно бо?льшим количеством степеней свободы, чем позволяет голографический принцип (основанный на общей теории относительности).

39

Квантово-механический спин является достаточно тонким понятием. Трудно представить, что значит «вращающийся», особенно в квантовой теории поля, где частицы считаются точками. На самом деле, из экспериментов следует, что частицы могут обладать внутренним свойством, очень похожим на постоянный угловой момент. Более того, из квантовой теории следует, и эксперименты это подтверждают, что частицы могут иметь угловой момент, который является только целым кратным некоторой фундаментальной величины (константы Планка, делённой на 2). Поскольку классические вращающиеся объекты обладают внутренним угловым моментом (который, однако, не является постоянным — он изменяется при изменении вращательной скорости объекта), теоретики заимствовали название «спин» и применили его к аналогичной квантовой ситуации. Отсюда название «спиновый угловой момент». Хотя выражение «вращающийся как волчок» создаёт подходящий зрительный образ, более точно будет представлять, что частицы характеризуются не только их массой, электрическим зарядом, зарядом ядра, а также внутренним неизменным спиновым угловым моментом. Подобно тому как электрический заряд частицы является одним из её фундаментальных определяющих свойств, эксперименты демонстрируют, что таким же свойством является её спиновый угловой момент.

40

Напомним, что причиной напряжённости между общей теорией относительности и квантовой механикой являются мощные квантовые флуктуации гравитационного поля, которые сотрясают пространство-время настолько сильно, что традиционные математические методы перестают работать. Квантовая неопределённость говорит нам, что эти флуктуации становятся тем сильнее, чем меньше расстояние (именно поэтому эти флуктуации в обычной жизни не видны). Вычисления показывают, что именно энергичные флуктуации на расстояниях, меньше планковского масштаба, расстраивают наши математические инструменты (чем меньше расстояние, тем больше энергия флуктуаций). Поскольку в рамках квантовой теории поля частицы описываются как точки, не имеющие пространственного размера, расстояния, достижимые этими частицами, могут быть сколь угодно малыми, и, следовательно, ощущаемые ими квантовые флуктуации могут быть сколь угодно энергичными. В теории струн ситуация изменяется. Струны не являются точками — у них имеется пространственный размер. Это означает, что есть предел малости достижимого расстояния, даже в принципе, так как струна не может уместиться на расстоянии меньшем, чем её длина. В свою очередь самое малое достижимое расстояние задаёт предел того, насколько энергичными могут быть квантовые флуктуации. Этот предел оказывается достаточным, чтобы приручить неуправляемую математику, позволяя теории струн соединить квантовую механику и общую теорию относительности.

41

Если некий объект был бы по-настоящему одномерным, мы не смогли бы его видеть, потому что у него нет поверхности, от которой могли бы отражаться фотоны, и он не мог бы сам порождать фотоны посредством атомных переходов. Поэтому когда я говорю «увидеть», то подразумеваю все возможные способы наблюдения или экспериментирования, которые могли бы подтвердить пространственную протяжённость объекта. Тогда утверждение состоит в том, что любое пространственное измерение, меньшее чем разрешающая способность оборудования, не может быть обнаружено на эксперименте.

42

«What Einstein never knew», NOVA documentary, 1985.

43

Более точно, та составляющая компонента Вселенной, которая наиболее существенна для нашей формы жизни, была бы разительно другой. Поскольку известные частицы и объекты, из которых они состоят — звёзды, планеты, люди и так далее, — сводятся к менее чем 5 процентам массы Вселенной, такое нарушение не будет влиять на бо?льшую часть Вселенной, по крайней мере в том, что касается её массы. Однако, если рассматривать это влияние на жизнь в привычном нам виде, разница будет огромной.

44

Существуют некоторые умеренные ограничения, которые квантовая теория поля накладывает на свои внутренние параметры. Во избежание определённых типов неприемлемого физического поведения (нарушения закона сохранения, нарушения определённых преобразований симметрии и так далее) могут накладываться ограничения на заряды (электрические, а также ядерные) частиц теории. Более того, поскольку сумма вероятностей во всех физических процессах обязана быть равной 1, массы частиц также не могут быть любыми. Но даже при этом допустимые значения характеристик частиц варьируются достаточно широко.

45

Некоторые исследователи могут заметить, что хотя ни квантовая теория поля, ни текущее состояние теории струн не дают объяснения свойств частиц, этот вопрос более насущен для теории струн. Он достаточно сложен, но для заинтересованных читателей приведём краткое резюме. Свойства частиц в квантовой теории поля — например, их массы — задаются числами, которые подставляются в уравнения теории. Сам факт того, что уравнения квантовой теории поля допускают варьирование таких чисел, является математическим способом сказать, что квантовая теория поля не определяет массы частиц, а, наоборот, использует их в качестве начальных данных. В теории струн гибкость в выборе масс частиц имеет схожее математическое происхождение — уравнения допускают свободное варьирование некоторых чисел, — однако проявление этой гибкости более значимо. Свободно изменяющиеся числа — числа, которые могут изменяться без каких-либо затрат энергии — соответствуют наличию в теории безмассовых частиц. (Если вернуться к главе 3 к языку кривых потенциальной энергии, то представьте совершенно плоскую кривую, то есть горизонтальную линию. Подобно тому как прогулка по совершенно плоской поверхности не меняет вашей потенциальной энергии, изменение значения такого поля не приведёт к затратам энергии. Поскольку масса частицы соответствует кривизне кривой потенциальной энергии квантового поля вблизи её минимума, то кванты таких полей являются безмассовыми.) Избыточное число безмассовых частиц является особенно неприятным свойством любой предлагаемой теории, потому что есть строгие ограничения на такие частицы, вытекающие из экспериментальных данных, полученных на ускорителях, и космологических наблюдений. Чтобы теория струн была жизнеспособной, безмассовым частицам необходимо придать массу. В течение последних лет было предложено несколько механизмов генерации масс, основанных на потоках, пронизывающих дырки в пространствах Калаби–Яу дополнительных измерений. Я вернусь к этому в главе 5.

46

Возможно, что в экспериментах будут получены данные, которые сильно пошатнут нашу веру в теорию струн. Структура теории струн гарантирует, что определённые базовые принципы должны соблюдаться во всех физических явлениях. Среди них унитарность (сумма вероятностей всех возможных результатов в данном эксперименте должна быть равна 1) и локальная Лоренц-инвариантность (в достаточно малой области справедлива специальная теория относительности), а также более технические свойства, такие как аналитичность и кроссинг-симметрия (результат столкновения частиц должен зависеть от импульсов частиц таким образом, чтобы удовлетворялся некоторый набор математических критериев). Если будет обнаружено — возможно, на Большом адронном коллайдере, — что любой из этих принципов нарушается, то примирить полученные данные с теорией струн станет трудной задачей. (Согласовать эти данные со Стандартной моделью физики частиц, которая также использует эти принципы, будет столь же проблематично; однако здесь спасает допущение, что при достаточно высоких энергиях Стандартная модель должна уступить место некой новой физике, поскольку она не включает в себя гравитацию. Но если мы получим данные, конфликтующие с любым из перечисленных выше принципов, это будет указывать на то, что новая физика — это не теория струн.)

47

Когда говорят о центре чёрной дыры, то часто создаётся впечатление, что это некое место в пространстве. Но это не так. Центром чёрной дыры следует считать определённый момент времени. При пересечении горизонта событий чёрной дыры время и пространство (радиальное направление) меняются ролями. Если вы падаете в чёрную дыру, ваше радиальное движение являет собой движение во времени. Таким образом, вас толкает в центр чёрной дыры точно так же, как вас толкает к следующему моменту времени. В этом смысле центр чёрной дыры похож на последний момент времени.

48

По многим причинам энтропия является ключевым понятием в физике. В обсуждаемом случае энтропия используется как диагностика того, не упускает ли теория струн какую-нибудь существенную физику при описании чёрных дыр. Если бы так случилось, то результат вычислений беспорядка внутри чёрной дыры на основе струнной математики оказался бы неверным. Тот факт, что ответ точно совпадает с тем, что Бекенштейн и Хокинг вывели с помощью совсем других рассуждений, указывает на то, что теория струн успешно ухватила фундаментальное физическое описание. Это очень обнадёживающий результат. Более подробно об этом можно прочитать в книге «Элегантная Вселенная», глава 13.

49

Первое указание на парность форм Калаби–Яу возникло в работе Ланса Диксона, а также в независимой работе Вольфганга Лерхе, Николаса Уорнера и Кумруна Вафы. В моей работе с Роненом Плессером был предложен метод построения первого конкретного примера таких пар, которые мы назвали зеркальными парами, а соотношение между ними — зеркальной симметрией. Плессер и я также показали, что трудная задача, такая как определение числа сфер, которые можно упаковать в данную форму, неподъёмная при использовании одного из партнёров по паре, может стать гораздо легче на зеркальной форме. Этот результат был подхвачен Филиппом Канделасом, Ксенией де ла Осой, Полом Грином и Линдой Паркерс — они развили технику вычислений, основанную на равенстве, которое Плессер и я установили между «трудными» и «простыми» формулами. С помощью простой формулы они получили информацию о трудном партнёре, включая числа, связанные с упаковкой сфер, приведённые в основном тексте книги. За последующие годы зеркальная симметрия стала отдельной областью исследований, где было получено много важных результатов. Детальная история этого вопроса приведена в книге Шин-Туна Яу и Стива Надиса: Shing-Tung Yau and Steve Nadis, «The Shape of Inner Space». New York: Basic Books, 2010.

50

Утверждение теории струн об успешном соединении квантовой механики и общей теории относительности основывается на множестве вычислений, а также на убедительных результатах, описанных в главе 9.

51

Классическая механика:
Электромагнетизм: d*F = *J; dF = 0. Квантовая механика:

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159