Скрытая реальность. Параллельные миры и глубинные законы космоса

В первом подходе, инициаторами которого являются Джанкарло Джирарди, Альберто Римини и Туллио Вебер, делается попытка придать смысл копенгагенской схеме путём подстройки математического аппарата теории, основанного на уравнении Шрёдингера, так чтобы он действительно приводил к схлопыванию волны вероятности. Но проще сказать, чем сделать. Подстроенный математический аппарат теории не должен изменять волны вероятности объектов микромира, таких как отдельные частицы или атомы, поскольку у нас нет причин вносить поправки в успешное описание явлений в этой области. Но подстройка обязательно требуется, когда в игру вступают объекты макромира, такие как лабораторное оборудование, что приводит к схлопыванию общей волны вероятности. Джирарди, Римини и Вебер развили соответствующий математический аппарат. Итог их работы таков, что с помощью предложенных ими подстроенных уравнений акт измерения действительно заставляет волну схлопнуться; это приводит к эволюции волны вероятности, показанной на рис. 8.6.

Второй подход, изначально развитый Луи де Бройлем в 1920-х годах и затем спустя десятилетия дополненный Дэвидом Бомом, начинается с математического предположения, перекликающегося с идеями Эверетта. Уравнение Шрёдингера при любых обстоятельствах обязано задавать эволюцию квантовых волн. Поэтому в теории де Бройля–Бома волны вероятности распространяются так же, как в многомировом подходе. Однако теория де Бройля–Бома основана на идее, которую я ранее охарактеризовал как ошибочную: в этом подходе все, кроме одного, из множества миров, содержащиеся в волне вероятности, являются лишь возможными мирами; только один мир считается реальным.

С этой целью в данном подходе перестают петь заученную квантовую песню о волне или частице (что до измерения электрон — это волна, а после измерения электрон превращается в частицу), а вместо этого предлагают одновременно рассматривать волны и частицы. В противоположность стандартной квантовой точке зрения, де Бройль и Бом считают частицы крошечными, локализованными сущностями, эволюция которых происходит вдоль определённых траекторий, что приводит к обычной, однозначной действительности, так же как и при классическом описании. Единственный «реальный» мир — это тот, в котором частицы находятся в своих единственных, определённых положениях. При этом квантовые волны играют совершенно другую роль. Вместо воплощения всей совокупности реальностей, роль квантовой волны сводится к руководству движением частиц. Квантовая волна толкает частицы в те положения, где высота волны большая, что делает вероятным обнаружение частиц в этих положениях, и отталкивает от положений, где высота волны мала, что делает обнаружение частиц в этих положениях маловероятным. Для описания этого процесса де Бройлю и Бому требуется дополнительное уравнение, описывающее действие квантовой волны на частицу, поэтому хотя от уравнения Шрёдингера не отказываются, но теперь на сцене появляется и другой математический исполнитель. (Заинтересованный читатель познакомится с этими уравнениями ниже.)

В течение многих лет бытовало мнение, что подход де Бройля–Бома не стоит того, чтобы на него тратить время, что он перегружен дополнительными вещами — не только вторым уравнением, но также, поскольку он вовлекает одновременно частицы и волны, удвоенным списком ингредиентов. Недавно, однако, стали раздаваться голоса, что этот критицизм надо вложить в контекст. Из работы Джирарди–Римини–Вебера совершенно ясно следует, что даже в версии флагмана квантовой механики, в копенгагенском подходе, требуется второе уравнение. Помимо этого, включение как частиц, так и волн приносит огромную выгоду: возрождается понятие объектов, движущихся вдоль определённых траекторий, происходит возвращение к базовому, привычному свойству реальности, от которого копенгагенцы несколько поспешно убедили всех отказаться. На более техническом уровне критицизм состоит в том, что этот подход является нелокальным (новое уравнение показывает, что воздействие в одной точке моментально переносится в удалённые точки), и его трудно совместить со специальной теорией относительности. Но важность первого критического замечания снижается, если заметить, что даже в копенгагенском подходе имеются нелокальные свойства, которые, к тому же, подтверждены экспериментально. Вопрос насчёт совместимости со специальной теорией относительности безусловно важен, и его ещё предстоит решить в полном объёме.

Частично неприятие теории де Бройля–Бома вызвано тем, что математический формализм теории не всегда представляется в отчётливом виде. Для математически настроенного читателя, приведём здесь прямой вывод этой теории.

Начнём с уравнения Шрёдингера для волновой функции частицы:

где плотность вероятности частицы в точке x, ?(x) задаётся стандартным уравнением, ?(x) = |?(x)|. Теперь представьте, что частица движется по определённой траектории со скоростью, задаваемой функцией ?(x) в точке x. Какому физическому условию должна удовлетворять функция скорости? Определённо, она должна удовлетворять закону сохранения вероятности: если частица движется со скоростью ?(x) из одной области в другую, плотность вероятности должна меняться соответственно:

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159