Скрытая реальность. Параллельные миры и глубинные законы космоса

Во-вторых, в исходной аналогии высота подножия горы, куда в итоге скатывается инфлатон, считалась «уровнем моря», нулевой высотой, что означало, что инфлатон отдал всю свою энергию (и давление). Но после пересмотра высота подножия горы должна соответствовать совместной энергии от всех источников, заполняющей пространство, после завершения процесса инфляции. Тем самым мы получаем другой способ взглянуть на космологическую постоянную пузырька-вселенной. Таким образом, загадка объяснения нашей космологической постоянной переформулируется в загадку объяснения высоты подножия горы — почему она так близко к уровню моря, но не совпадает с ним?

В-третьих, исходно рассматривался простейший горный рельеф, когда вершина гладко переходит в основание горы, куда в итоге попадает инфлатон (см. рис. 3.1). Затем были учтены другие составляющие (поля Хиггса), эволюция которых и окончательные положения равновесия будут влиять на физические свойства и проявление пузырьков-вселенных (см. рис. 3.5). В теории струн диапазон возможных вселенных становится ещё богаче. Форма дополнительных измерений определяет физические свойства внутри конкретного пузырька-вселенной, поэтому возможные «положения равновесия», показанные как долины на рис. 3.6б, теперь будут соответствовать возможным формам дополнительных измерений. Чтобы разместить 10 возможных форм для дополнительных измерений горный пейзаж должен быть с размахом дополнен долинами, террасами, обнажениями пород, подобно тому как показано на рис. 6.4. Любое место в горном рельефе, куда может скатиться шарик, соответствует некоторой форме дополнительных измерений; высота этого места определяет космологическую постоянную соответствующего пузырька-вселенной. На рис. 6.4 показано то, что называется струнным ландшафтом.

Рис. 6.4. Струнный ландшафт можно схематично рассматривать в виде горного рельефа, в котором разные долины соответствуют разным формам дополнительных измерений, а высота определяет величину космологической постоянной

 

Теперь, с учётом более тонкого понимания нашей аналогии с горным рельефом, или ландшафтом, рассмотрим как квантовые процессы влияют на форму дополнительных измерений. Мы увидим, что квантовая механика озаряет наш горный ландшафт.

Квантовое туннелирование в ландшафте

Рисунок 6.4, безусловно, схематичный (каждое из полей Хиггса на рис. 3.6 отложено в своих собственных осях; аналогично каждый из приблизительно 500 различных потоков поля, которые могут пронизывать формы Калаби–Яу, также должен быть отложен в отдельных осях — однако нарисовать горный рельеф в 500-мерном пространстве довольно затруднительно), однако этот рисунок правильно отражает тот факт, что вселенные с разными формами дополнительных измерений являются частями единого рельефа. И если учесть квантовые эффекты, воспользовавшись результатами, полученными легендарным физиком Сиднеем Коулменом в соавторстве с Фрэнком де Луччией, то взаимосвязи между разными вселенными приведут к удивительным превращениям.

Ключевым физическим процессом при рассмотрении квантовых эффектов в мультивселенной является квантовое туннелирование. Представьте частицу, например электрон, налетающую на твёрдый барьер, пусть это будет стальная плита толщиной в три метра. Классическая физика говорит, что электрон не сможет пройти сквозь барьер. Отличительная черта квантовой механики состоит в том, что неумолимый классический вердикт «не сможет пройти», часто преобразуется в более мягкое квантовое утверждение «есть малая, но не равная нулю вероятность, что сможет». Причина в том, что квантовые флуктуации частицы позволяют ей время от времени неожиданно материализоваться на другой стороне непроницаемого барьера. Момент, когда такое квантовое туннелирование происходит, совершенно случаен; самое большее, что мы можем сделать, — это предсказать вероятность того, что это случиться в тот или иной временно?й интервал. Однако математические расчёты показывают, что если подождать достаточно долго, туннелирование произойдёт сквозь любой барьер. И оно действительно происходит. Если бы это не происходило, то Солнце не смогло бы светить: для сближения ядер водорода на расстояние, достаточное для начала ядерного синтеза, они должны протуннелировать сквозь барьер электромагнитного отталкивания протонов.

Коулмен и де Луччия, а затем и многие их последователи, отмасштабировали квантовое туннелирование от одной частицы до целой вселенной, перед которой также встаёт «непреодолимый» барьер, отделяющий текущую конфигурацию вселенной от другой возможной конфигурации. Чтобы качественно понять полученный ими результат, представьте себе две вселенные, одинаковые во всём кроме некоторого поля, равномерно заполняющего каждую из них, энергия которого выше в одной и ниже в другой. Если барьера нет, более высокое значение поля скатится до более низкого, подобно скатывающемуся с холма шарику при обсуждении инфляционной космологии. Но что произойдёт, если кривая энергии поля имеет «горный выступ», отделяющий данное значение от искомого, как показано на рис. 6.5? Коулмен и де Луччия обнаружили, что как и в случае одной частицы, вселенная поведёт себя запрещённым в классической физике образом: она может просочиться — квантово протуннелировать — сквозь барьер и оказаться в конфигурации с меньшей энергией.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159