Скрытая реальность. Параллельные миры и глубинные законы космоса

Как показал Калуца, во вселенной с одним дополнительным пространственным измерением гравитация и электромагнетизм могут быть описаны единым образом как пространственно-временные искривления, рябь. Но гравитация рябит в привычных трёх пространственных измерениях, а электромагнетизм — в четвёртом. Огромной проблемой для гипотезы Калуцы стало объяснение того, почему мы не видим четвёртое пространственное измерение. Именно тогда Калуца предложил описанное выше решение: дополнительные измерения, если они достаточно малы, могут ускользать от фиксации нашими органами чувств и оборудованием.

В 1919 году, узнав о гипотезе объединения в дополнительных измерениях, Эйнштейн засомневался. Он был впечатлён подходом, который позволил продвинуть вперёд его мечту, но его беспокоила неординарность самого метода. После двухгодичных размышлений, задержав при этом выход в печать статьи Калуцы, Эйнштейн наконец-то принял эту идею и мгновенно стал одним из самым рьяных поклонников дополнительных пространственных измерений. В своих собственных поисках единой теории Эйнштейн постоянно возвращался к этой теме.

Несмотря на благословение самого Эйнштейна, последующие исследования показали, что программа Калуцы–Клейна сталкивается с некоторыми препятствиями, самым трудным из которых является невозможность встроить детальные свойства частиц материи, таких как электрон, в математическую структуру. В течение двух десятилетий предлагались и отвергались искусные способы обойти эту проблему, наравне с всевозможными обобщениями и модификациями исходного предложения Калуцы–Клейна, однако поскольку не было предложено ни одного подхода, свободного от этих недостатков, то к середине 1940-х годов идея объединения через дополнительные измерения практически была забыта.

Спустя тридцать лет возникла теория струн. Математический аппарат теории струн не просто разрешал существование во Вселенной дополнительных измерений, он требовал их присутствия. Таким образом, в теории струн возник новый, готовый к использованию формализм для привлечения программы Калуцы–Клейна. На вопрос «если теория струн является долгожданной искомой единой теорией, тогда почему мы не видим требуемые дополнительные измерения?» до нас эхом, сквозь десятилетия, доносится ответ теории Калуцы–Клейна, что эти измерения находятся вокруг нас, но слишком малы, чтобы их увидеть. Теория струн возродила программу Калуцы–Клейна, и к середине 1980-х годов учёные во всём мире воодушевлённо полагали, что это только вопрос времени — самого близкого времени, как говорили наиболее рьяные сторонники, — когда теория струн приведёт к полному описанию всей материи и взаимодействий.

Большие надежды

В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. Во многом похожая атмосфера царила в 1920-х годах, когда перед учёными распахнул свои двери мир квантовых явлений. При таком возбуждении понятно, что некоторые теоретики заговорили о скорой революции в решении основных проблем фундаментальной физики: слиянии гравитации и квантовой механики, объединении всех сил в природе, объяснении свойств материи, определении числа пространственных измерений, прояснении сингулярностей чёрных дыр, выяснении происхождения Вселенной. Но более умудрённые физики полагали, что такие надежды преждевременны. Теория струн настолько насыщена, обширна и математически трудна, что спустя почти три десятилетия после первой эйфории современные учёные одолели лишь часть исследовательского пути. С учётом того, что мир квантовой гравитации в сотни миллиардов миллиардов раз меньше чем всё, что мы сегодня можем экспериментально измерить, дорога будет длинная, даже по самым скромным оценкам.

В какой её части мы находимся? В конце главы я кратко опишу самые современные достижения в некоторых ключевых областях (оставляя в стороне вопрос о параллельных вселенных, что будет более подробно рассмотрено в последующих главах), дам оценку успехам и нерешённым проблемам.

Теория струн и свойства частиц

Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими? Например, почему электрон обладает именно такой массой, а u-кварк имеет именно такой электрический заряд? Интерес к этим вопросам не просто академический, он отражает очень важный факт, что упоминался ранее. Если бы у частиц были другие свойства — например, будь электрон чуть тяжелее или легче, или электростатическое отталкивание между электронами сильнее или слабее, — ядерные процессы, питающие звёзды, подобные нашему Солнцу, были бы нарушены. Вселенная без звёзд была бы совсем другой. Очевидно, что без солнечного света и тепла не возникла бы сложная цепочка событий, приведшая к возникновению жизни на Земле.

Поэтому возникает фундаментальный вопрос: как с помощью ручки, бумаги и, возможно, компьютера, а также руководствуясь нашим пониманием законов природы, вычислить свойства частиц и получить результаты, которые согласуются с экспериментальными данными. Если нам удастся ответить на этот вопрос, это станет одним из самых важных шагов на пути к пониманию того, почему Вселенная такая как она есть.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159