Скрытая реальность. Параллельные миры и глубинные законы космоса

В рамках хорошо разработанного подхода с мультивселенными можно чётко выделить те физические свойства, которые следует рассматривать с точки зрения, отличной от стандартной: это те свойства, которые изменяются от одной вселенной к другой. В этом сила данного подхода. В теории с мультивселенными можно иметь точный контроль над тем, какие нерешённые загадки, характерные для некоторой частной вселенной, сохранятся в мультивселенном контексте, а какие нет.

Космологическая постоянная являет собой первый пример. Если её значение варьируется в рамках данной мультивселенной, причём во вполне определённом интервале, тогда то, что когда-то было загадкой, — её значение — теперь становится весьма прозаичным. Подобно тому как в обувном магазине с налаженными поставками товара всегда найдутся ботинки вашего размера, так и необъятная мультивселенная заведомо будет содержать вселенные с измеренным нами значением космологической постоянной. Задача, над которой доблестно бились поколения учёных, легко может быть разрешена с помощью идеи мультивселенной. Мультивселенная показала, что этот вопрос, кажущийся столь глубоким и столь непонятным, возникает из-за ошибочного допущения, что космологическая постоянная имеет единственное значение. Именно в этом смысле теория мультивселенной может обладать значительной предсказательной силой и иметь потенциальную возможность оказать неоценимое влияние на ход научных исследований.

С подобными рассуждениями нужно обходиться очень аккуратно. Что если Ньютон, увидев упавшее яблоко, решил бы, что мы являемся частью мультивселенной, в которой яблоки в одних вселенных падают вниз, в других вверх, поэтому падающее яблоко лишь указывает на то, в какой именно вселенной мы находимся, и не стоит предпринимать никакие дальнейшие исследования? Или он бы пришёл к выводу, что в каждой вселенной какие-то яблоки падают вниз, а какие-то вверх, и причина, согласно которой мы видим только падающие вниз яблоки, — это всего лишь вопрос нашего окружения, то есть все падающие вверх яблоки в нашей Вселенной уже упали вверх, поэтому давно оказались где-то в глубинах космоса? Это, конечно же, глупый пример — никогда не существовало причины, в том числе теоретической, так думать — но вопрос сам по себе серьёзный. Привлекая мультивселенную, наука может ослабить стимул решать конкретные задачи, даже если некоторые из этих задач ждут своего решения в рамках стандартного подхода, без мультивселенной. Вместо того чтобы упорно трудиться и расширять своё понимание, можно попасть под обаяние мультивселенной и преждевременно забросить привычные методы исследований.

Здесь кроется потенциальная угроза, которая объясняет, почему некоторые учёные содрогаются при упоминании мультивселенных рассуждений. Именно поэтому концепция мультивселенной, если её воспринимать всерьёз, должна быть строго обоснована с помощью теоретических результатов, она должна чётко характеризовать вселенные, из которых она состоит. Анализ должен быть аккуратными и методичным. Однако отворачиваться от мультивселенной только потому, что она могла бы завести в тупик, также рискованно. Если мы так поступим, мы закроем глаза на реальность.

Глава 8. Множественные миры квантовой механики
Квантовая мультивселенная

Статус теорий с параллельными вселенными, которые были рассмотрены выше, находится под большим вопросом. Бесконечное пространство, вечная инфляция, миры на бранах, циклическая космология, струнный ландшафт — эти захватывающие идеи возникли из ряда научных открытий. Но каждая из них остаётся гипотетичной, как и породившие их мультивселенные. Хотя многие физики с готовностью высказывают своё мнение «за» или «против» разных схем мультивселенных, большинство признают, что только будущие открытия — теоретические, экспериментальные и наблюдательные — определят, какие из этих идей останутся в науке.

Идея мультивселенной, к рассмотрению которой мы сейчас перейдём, возникает из квантовой механики. У неё особый статус. Многие физики уже определились с окончательным вердиктом по поводу этой мультивселенной. Но особенность в том, что их вердикты не совпадают. Различия проистекают из глубокой и до сих пор нерешённой проблемы перехода от вероятностной интерпретации квантовой механики к определённости повседневной реальности.

Квантовая реальность

В 1954 году, почти тридцать лет спустя после формулировки квантовой теории такими светилами науки, как Нильс Бор, Вернер Гейзенберг и Эрвин Шрёдингер, никому неизвестный студент Принстонского университета по имени Хью Эверетт III придумал поразительную интерпретацию. Анализируя проблему, над которой Бор, мэтр квантовой механики, безуспешно корпел и никак не мог решить, он показал, что для правильного понимания квантовой механики может потребоваться огромное количество параллельных вселенных. Теория Эверетта стала одной из первых математических конструкций, из которой следовало, что мы можем являться частью некоторой мультивселенной.

У теории Эверетта, которая позже будет названа многомировой интерпретацией квантовой механики, весьма извилистая судьба. Изложив математические следствия, вытекающие из его гипотезы, в январе 1956 года Эверетт послал рукопись своей докторской диссертации Джону Уилеру, своему научному руководителю. Уилер, один из наиболее выдающихся мыслителей в физике двадцатого столетия, был очень впечатлён. В мае того же года он посетил Копенгаген и обсудил с Бором идеи Эверетта. Однако Бор воспринял их весьма прохладно. Бор и его коллеги потратили годы, разрабатывая и уточняя своё видение квантовой механики. Для них поднятые Эвереттом вопросы и чудной способ ответа не представляли особой ценности.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159