Однако следует иметь в виду, что не физики определяют, как расширяется Вселенная. Насколько мы можем судить из наиболее точных наблюдений, это делают уравнения общей теории относительности Эйнштейна. Таким образом, перспективность инфляционного сценария зависит от того, возникает ли предложенная модификация стандартной модели Большого взрыва из уравнений Эйнштейна. На первый взгляд это не так очевидно.
Например, я совершенно уверен, что будь у нас возможность встретиться с Ньютоном и объяснить ему в течение пяти минут основные положения общей теории относительности, не забыв про искривлённость пространства и расширяющуюся Вселенную, то он расценил бы наш последующий рассказ про инфляцию как абсурдный. Ньютон бы твёрдо настаивал, что независимо от вычурной математики и новомодного эйнштейновского языка, гравитация является силой притяжения. Стукнув кулаком по столу, он заявил бы, что гравитация притягивает предметы, снижая скорость любого космического разбегания. Расширение, которое начинается вяло, а затем резко ускоряется на каком-то коротком отрезке времени, могло бы решить проблему горизонта, но это фикция. Ньютон настаивал бы на том, что космическое расширение должно замедлиться со временем, подобно тому как гравитационное притяжение уменьшает скорость подброшенного вверх бейсбольного мяча. Конечно, если расширение полностью прекратится и начнётся космическое сжатие, то скорость схлопывания может постепенно возрастать, ровно так же как скорость мяча может расти по мере того, как он летит обратно вниз. Но скорость пространственного расширения не может увеличиваться.
Ньютон ошибается, но вы не вправе винить его. Ведь у вас было мало времени для подробного обзора общей теории относительности. Не поймите меня неправильно. Понятно, что, имея пять минут (одну из которых вы потратили на объяснение того, что такое бейсбол), вы сосредоточились на искривлённом пространстве-времени как источнике гравитации. Ньютон сам настаивал на том, что механизм распространения гравитации неизвестен, и он всегда считал это зияющей дырой в своей собственной теории. Поэтому естественно, что вы хотели продемонстрировать ему решение этого вопроса Эйнштейном. Однако эйнштейновская теория гравитации — это не просто латание дыр в ньютоновской физике. Гравитация общей теории относительности отличается по самой сути от гравитации ньютоновской физики; и есть одно свойство, которое следует особо отметить для нашего изложения.
В ньютоновской теории гравитация обусловлена лишь массой предмета. Чем больше масса, тем сильнее гравитационное притяжение предмета. В эйнштейновской теории гравитация обусловлена массой предмета (и его энергией), а также его давлением. Взвесьте запечатанный пакет с картофельными чипсами. Теперь сожмите пакет, чтобы воздух, находящийся внутри него, оказался под высоким давлением, и затем снова взвесьте его. Согласно Ньютону, вес не изменится, потому что масса не изменилась. Согласно Эйнштейну, сжатый пакет будет весить немножко больше, потому что, хотя масса осталась прежней, давление увеличилось. При обычных обстоятельствах подобный эффект увеличения веса исчезающе мал, поэтому мы не обращаем на него никакого внимания. Однако из общей теории относительности и подтверждающих её экспериментов со всей очевидностью следует, что давление даёт вклад в гравитацию.
Это отклонение от ньютоновской теории крайне важно. Давление воздуха, будь это воздух в пакете с картофельными чипсами, надутом шаре или в комнате, где вы сейчас читаете эту книгу, положительно, и это означает, что воздух давит наружу. В общей теории относительности положительное давление, как и положительная масса, даёт положительный вклад в гравитацию, что приводит в увеличению веса. Однако, хотя масса всегда положительна, давление в некоторых ситуациях может быть отрицательным. Представьте себе растянутую резинку. Вместо того, чтобы толкать наружу, растянутые молекулы тянут вовнутрь, приводя к тому, что в физике называется отрицательным давлением (или упругостью). И точно так же как из общей теории относительности следует, что положительное давление приводит к гравитационному притяжению, эта теория утверждает, что отрицательное давление приводит к противоположному — гравитационному отталкиванию.
Гравитационное отталкивание?
Это поставило бы Ньютона в тупик. Для него гравитация была исключительно силой притяжения. Однако нас это не должно смущать: мы и раньше сталкивались с этим странным пунктом в договоре между общей теорией относительности и гравитацией. Помните, как в предыдущей главе мы обсуждали космологическую постоянную Эйнштейна? Я говорил, что при наполнении пространства однородной энергией космологическая постоянная приводит к гравитационному отталкиванию. Однако тогда я не стал объяснять, почему так происходит. Теперь я могу это сделать. Космологическая постоянная не только наполняет пространство однородной энергией, величина которой определяется значением самой константы (число в третьей строчке гравитационной декларации), но также приводит к появлению в пространстве однородного отрицательного давления (скоро увидим, почему). И когда, как в примерах выше, дело доходит до гравитации, отрицательное давление играет роль, противоположную положительной массе и положительному давлению. Так возникает гравитационное отталкивание.