Скрытая реальность. Параллельные миры и глубинные законы космоса

Преданные сторонники мультивселенной ссылаются на результат, полученный Вайнбергом и его соавторами, как на большой успех антропного принципа. А противники парируют результатами, полученными Тегмарком и Ризом и принижающими весомость антропных доводов. На самом деле, споры пока преждевременны. Это всё в высшей степени предварительные и пробные вычисления, которые в лучшем случае дают повод задуматься над самим антропным принципом. При определённых ограничениях из них следует, что антропный подход позволяет уложиться в диапазон измеряемых значений космологической постоянной; но стоит немножко ослабить эти ограничения, и вычисления мгновенно приводят к существенному росту диапазона допустимых значений. Такая чувствительность означает, что для более подробных вычислений в теории с мультивселенной потребуется более точное понимание характеристик составляющих вселенных и того, как они варьируются, что должно в конце концов привести к замене произвольных допущений чёткими теоретическими указаниями. Всё это очень важно для того, чтобы теория мультивселенной позволяла сделать определённые предсказания.

Учёные упорно трудятся над достижением этой цели, однако им предстоит ещё много чего преодолеть.

Предсказания в мультивселенной IV:
Что ещё нужно?

Какие ещё препятствия нам предстоит преодолеть, прежде чем мы сможем получить точные предсказания из данной теории мультивселенной? Начнём с трёх самых главных.

Во-первых, как мы наглядно видели в рассмотренном выше примере, анализируемая модель мультивселенной должна давать возможность определить те физические свойства, которые варьируются от одной вселенной к другой, и для этих свойств мы должны уметь вычислять их статистическое распределение. Существенным здесь является понимание космологического механизма, благодаря которому мультивселенная населяется вселенными (такому как образование дочерних вселенных в модели ландшафтной мультивселенной). Именно этот механизм определяет, насколько один тип вселенных превалирует над другим, и, следовательно, именно он задаёт статистическое распределение физических свойств. Если повезёт, то получаемые распределения во всей мультивселенной, либо среди тех вселенных, в которых возможна жизнь, будут достаточно скошены, так что мы сможем извлечь определённые предсказания.

Во-вторых, если мы действительно опираемся на антропный принцип, то следует учесть то основное предположение, что мы, человечество, являемся самым заурядным видом. Жизнь может оказаться редким явлением для мультивселенной; а разумная жизнь ещё более редким. Но согласно антропному принципу, среди всех разумных существ мы настолько типичны, что то, что мы наблюдаем, должно представлять собой средние значения среди всех возможных значений, наблюдаемых любыми другими разумными существами, населяющими мультивселенную. (Александр Виленкин назвал это принципом заурядности.) Если распределение физических свойств среди вселенных, где возможна жизнь, известно, такие средние можно вычислить. Однако, как правило, в этом вопросе нет ясности. Если впоследствии учёные покажут, что наши наблюдения попадают в диапазон вычисленных средних для некоторой частной мультивселенной, то уверенность в нашей типичности — а также в гипотезе мультивселенной — заметно укрепится. Эго было бы здорово! Но если наши наблюдения не попадут в диапазон средних значений, тогда это может свидетельствовать об ошибочности гипотезы мультивселенной или же может означать, что человечество не заурядный вид, а какой-то особенный. Даже на территории, на 99 процентов населённой лабрадорами, всё равно можно натолкнуться на какого-нибудь добермана, нетипичную собаку для этого места. В этой ситуации будет совсем непросто определить, является ли гипотеза мультивселенной ошибочной, или же она верна, но наша Вселенная почему-то оказалась совсем нетипичной.

Прогресс в этом направлении потребует, по всей видимости, более глубокого понимания механизма возникновения жизни в данной мультивселенной; подобные знания могли бы по крайней мере прояснить, насколько типичной была до сих пор наша эволюция. Это, конечно, очень важная задача. На данный момент, в большинстве антропных рассуждений этот вопрос полностью игнорируется под прикрытием идеи Вайнберга, что число разумных форм жизни в данной вселенной пропорционально числу содержащихся в ней галактик. Насколько мы понимаем, для разумной формы жизни необходима тёплая планета, для чего требуется звезда, входящая в какую-нибудь галактику, поэтому есть основания считать идею Вайнберга вполне убедительной. Но поскольку наши знания весьма рудиментарны, даже в вопросе собственной эволюции, это предположение не более чем гипотеза. Чтобы вычисления стали более точными, необходимо лучше понимать происхождение и развитие разумных форм жизни.

Мы подошли к третьему препятствию. На первый взгляд, его просто объяснить, но оно гораздо сложнее, чем кажется. Речь идёт о разделении бесконечности.

Разделение бесконечности

Чтобы сформулировать проблему, вернёмся к примеру с нашими собаками. Допустим, вы живёте в районе, в котором 3 лабрадора и одна такса. Закрывая глаза на усложнения типа частоты выгула собак, заключаем, что вероятность встретить лабрадора в 3 раза выше. Тот же вывод справедлив, если вокруг 300 лабрадоров и 100 такс; 3000 лабрадоров и 1000 такс; 3 миллиона лабрадоров и 1 миллион такс и так далее. Но что, если оба этих числа бесконечно большие? Как сравнить бесконечное число такс с троекратно бесконечным числом лабрадоров? Звучит как детский вопрос, ставящий в тупик родителей. Но это на самом деле серьёзный вопрос. Правда ли, что троекратная бесконечность больше обычной бесконечности? Если да, она больше именно в 3 раза?

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159