Скрытая реальность. Параллельные миры и глубинные законы космоса

Вывод такой, что удалённый наблюдатель — мы — заключает, что энтропия чёрной дыры определяется площадью её горизонта, потому что горизонт является местом её хранения. Такое утверждение видится совершенно разумным. Однако не забывайте, насколько неожиданным является то, что объём чёрной дыры не является хранилищем информации. Мы сейчас увидим, что полученный результат не просто отражает одно из особых свойств чёрных дыр. Чёрные дыры говорят нам не просто о том, как чёрные дыры хранят информацию. Они информируют нас о хранении информации в произвольном контексте. Отсюда начинается прямая дорога к голографическому принципу.

За пределами чёрных дыр

Рассмотрим произвольный объект или набор объектов — набор библиотек Конгресса, все компьютеры корпорации Google, архивы ЦРУ, — расположенных в некоторой области пространства. Представим для простоты, что эта область окружена воображаемой сферой (рис. 9.3а). Теперь допустим, что полная масса объектов по сравнению с заполняемым ими объёмом настолько заурядна, что её даже близко не хватит для образования чёрной дыры. Такова постановка задачи. А теперь важный вопрос: какое максимальное количество информации может храниться в этой области пространства?

Рис. 9.3. а) Набор объектов, хранящих информацию и расположенных внутри чётко очерченной области пространства; б) Расширение информационной ёмкости данной области; в) Когда количество вещества превосходит некоторую пороговую величину (её можно вычислить, исходя из общей теории относительности), данная область становится чёрной дырой

 

Ответ дают Второй закон и чёрные дыры, ставшие неожиданными партнёрами в этом вопросе. Представьте, что в область пространства добавляют вещество с целью увеличения её информационной ёмкости. Например, вы можете принести в корпорацию Google чипы с большим объёмом памяти или увесистые жёсткие диски; а в библиотеку Конгресса можно принести книги или электронные читалки. Поскольку даже сырое вещество несёт информацию — молекулы пара находятся здесь или там, они движутся со скоростью такой или сякой, — вы забиваете каждый уголок данной области пространства любой материей, какая только попадётся под руку. Пока не будет достигнута критическая отметка. В какой-то момент данная область станет настолько плотно набитой всякой всячиной, что если добавить ещё одно маленькое зёрнышко, то пространство внутри начнёт темнеть и превращаться в чёрную дыру. Когда такое случится, игра закончится. Размер чёрной дыры определяется её массой, поэтому при попытке увеличить её информационную ёмкость путём добавления большего количества вещества чёрная дыра начнёт увеличиваться в размере. Поскольку мы хотим рассмотреть информацию, которая может содержаться в данном фиксированном объёме пространства, такая ситуация выйдет за рамки поставленной задачи. Нельзя увеличить информационную ёмкость чёрной дыры, не заставив её при этом расти.

Следующие два наблюдения выводят нас на финишную прямую. Второй закон гарантирует, что энтропия возрастает в течение всего процесса, поэтому информация, скрытая внутри жёстких дисков, электронных читалок, старомодных бумажных книг и во всём остальном, что вы поместили в данную область пространства, меньше, чем информация, скрытая в чёрной дыре. Результаты Бекенштейна и Хокинга гласят, что скрытая информация чёрной дыры задаётся площадью её горизонта событий. Более того, поскольку вы работали очень аккуратно, так чтобы не выйти за исходную область пространства, то горизонт событий чёрной дыры совпадает с границей данной области и энтропия чёрной дыры равна площади окружающей эту область поверхности. Таким образом, мы получаем важный результат: количество информации внутри некоторой области пространства, хранящейся в любых объектах любой формы, всегда меньше площади окружающей эту область поверхности (измеренной в планковских единицах).

Вот к такому выводу мы пришли. Отметим, что хотя чёрные дыры играют главную роль в этих рассуждениях, весь анализ применим к любой области пространства, независимо от того, есть там чёрная дыра или нет. Если максимизировать информационную ёмкость данной области, то возникнет чёрная дыра, но если не превышать лимит добавляемого вещества, чёрная дыра не сформируется.

Поспешу добавить, что предел информационной ёмкости не должен нас заботить с практической точки зрения. Если сравнивать с современными рудиментарными накопителями, то потенциальная информационная ёмкость поверхности пространственной области просто чудовищна. Стопка из пяти стандартных терабайтных жёстких дисков легко умещается внутри сферы радиуса 50 сантиметров, поверхность которой покрывается 10 планковскими клетками. Таким образом, информационная ёмкость этой поверхности составляет примерно 10 бит, что равно миллиарду триллионов триллионов триллионов триллионов терабайтов, и поэтому несоизмеримо превышает всё, что вы можете купить. В Силиконовой долине подобные теоретические ограничения никого особо сильно не беспокоят.

Всё же, если задумываться об устройстве Вселенной, ограничения информационной ёмкости говорят о многом. Представьте любую область пространства, например, комнату, в которой я пишу эту книгу, или комнату, в который вы читаете её. Примите точку зрения Уилера и представьте, что всё происходящее в этой области сводится к некоторым информационным процессам — информация об устройстве окружающей среды в данный момент трансформируется посредством физических законов в информацию об устройстве окружающей среды через секунду, минуту или через час. Поскольку наблюдаемые нами физические процессы, а также процессы, которые нами управляют, по всей видимости, происходят внутри данной области, то естественно ожидать, что переносимая этими процессами информация также находится внутри этой области. Но только что полученные результаты предлагают альтернативный взгляд. Обнаруженная связь между информацией и площадью поверхности чёрной дыры выходит далеко за рамки простого численного расчёта; есть конкретный смысл, в котором информация хранится на поверхности чёрной дыры. Сасскинд и т’Хоофт указали, что данное рассуждение имеет совершенно общий характер: поскольку информация, необходимая для описания физических явлений внутри любой заданной области пространства, может быть полностью представлена данными на окружающей её поверхности, то существует причина думать, что эта поверхность и является тем местом, где происходят фундаментальные физические процессы. Как предлагают эти смелые учёные, привычная нам трёхмерная реальность связана голографической проекцией с удалёнными двумерными физическими процессами.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159