Истина и красота. Всемирная история симметрии.

В годы, предшествовавшие 1905-му, целый ряд физиков и математиков был озадачен этим странным свойством уравнений Максвелла.

Если выполнить какой-нибудь эксперимент с электричеством и магнетизмом в лаборатории и в движущемся поезде, то как согласовать результаты? Разумеется, немногие экспериментаторы работают в движущихся поездах, но все они работают на движущейся Земле. Для многих целей Землю можно считать неподвижной, поскольку экспериментальные приборы движутся вместе с ней, так что движение не создает никаких реальных отклонений. Ньютоновы законы движения, например, остаются в точности теми же в любой «инерциальной» системе отсчета — такой, которая движется с постоянной скоростью по прямой линии. Скорость Земли с неплохой точностью постоянна, но она вращается вокруг своей оси и обращается вокруг Солнца, так что ее движение относительно Солнца не является прямолинейным. Тем не менее путь, по которому движется прибор, почти прямой; имеет ли кривизна какое-либо значение, зависит от эксперимента, причем часто она никакого значения не имеет.

Никто бы не забеспокоился, если бы уравнения Максвелла принимали другой вид во вращающейся системе отсчета. Но открыто было нечто более тревожное: уравнения Максвелла выглядят по-разному в различных инерциальных системах отсчета. Электромагнетизм в движущемся поезде отличается от электромагнетизма в неподвижной лаборатории, даже когда поезд движется по прямой линии с постоянной скоростью.

Имелось и дополнительное усложнение: пожалуйста, пусть поезд или даже Земля движутся, но сама концепция движения является относительной. По большей части мы не замечаем движения Земли. Восход Солнца по утрам и закат по вечерам объясняются вращением Земли. Но мы не чувствуем этого вращения, мы установили его непрямыми методами.

Если вы сидите в поезде и смотрите в окно, у вас может сложиться впечатление, что вы неподвижны, а весь ландшафт проносится мимо вас. А наблюдательница, стоящая в поле и глядящая на ваш поезд, сделает противоположное наблюдение — что она сама неподвижна, а поезд движется. Когда мы говорим, что Земля летит вокруг Солнца, а не Солнце вокруг Земли, мы проводим тонкое различие, потому что оба описания верны — в зависимости от того, какая система отсчета выбирается. Если система отсчета движется вместе с Солнцем, то Земля движется относительно этой системы отсчета, а Солнце неподвижно. Но если система отсчета движется вместе с Землей — как все обитатели планеты, — то тогда движущимся объектом является Солнце.

К чему же тогда все переживания по поводу гелиоцентрической системы, согласно которой Земля вращается вокруг Солнца, а не наоборот? Несчастного Джордано Бруно сожгли за то, что он говорил, будто верно одно описание, в то время как Церковь предпочитала второе. Получается, что он погиб из-за простого недоразумения?

Не совсем. Бруно высказывал целый ряд утверждений, которые Церковь считала еретическими, — всякие мелочи типа несуществования Бога. Его судьба сложилась бы примерно так же, даже если б он никогда и не заикнулся о гелиоцентрической системе. Однако имеется важный смысл, в котором высказывание «Земля обращается вокруг Солнца» лучше высказывания «Солнце обращается вокруг Земли». Важное различие состоит в том, что математическое описание движения планет относительно Солнца намного проще, чем описание их движения относительно Земли. Теория, согласно которой в центре находится Земля, возможна, но очень сложна. Красота важнее, чем истина сама по себе. Многие точки зрения приводят к истинным описаниям природы, но некоторые позволяют глубже понять происходящее.

А если все движение относительно, то ничто не может находиться в абсолютном «покое». Ньютонова механика согласована со следующим по простоте предположением: все инерциальные системы отсчета эквивалентны. Но для уравнений Максвелла это не верно.

 

По мере того как девятнадцатое столетие приближалось к концу, надо было рассмотреть еще одну интригующую возможность. Поскольку свет считался волной, распространяющейся через эфир, возможно, в покое находился эфир. Вместо относительности всех движений можно было бы считать движения относительно эфира абсолютными. Однако это по-прежнему не объясняло, почему уравнения Максвелла не одни и те же во всех инерциальных системах отсчета.

Связующее звено здесь — симметрия. Переход от одной системы отсчета к другой есть операция симметрии на пространстве-времени. Инерциальные системы отсчета имеют дело с трансляционными симметриями, вращающиеся системы отсчета — с вращательными симметриями. Сказать, что законы Ньютона одни и те же во всякой инерциальной системе отсчета, — это все равно что сказать, что эти законы симметричны относительно трансляций с постоянной скоростью. По некоторым причинам уравнения Максвелла не обладают этим свойством. Отсюда вроде бы должно получаться, что некоторые инерциальные системы отсчета более инерциальны, чем другие. И если какие-либо инерциальные системы отсчета чем-то выделены, то это наверняка должны быть те, которые неподвижны относительно эфира.

Суть проблемы формулировалась в двух вопросах, одном — физическом, а другом — математическом. Физический вопрос был в том, можно ли движение относительно эфира наблюдать в эксперименте. Математический вопрос состоял в том, каковы симметрии уравнений Максвелла.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134