Истина и красота. Всемирная история симметрии.

 

Галуа работал с группами перестановок. Перестановка — это способ переупорядочить список объектов. В его случае объектами были корни алгебраического уравнения. Простейший из содержательных примеров дается кубическим уравнением общего вида, у которого имеются три корня a, b и с. Напомним, что есть шесть способов переставить эти символы и что — следуя Лагранжу и Руффини — можно перемножать любые две перестановки, выполняя их последовательно. Мы видели, например, что cba?bca = acb. Действуя подобным же образом, можно построить «таблицу умножения» для шести перестановок. Чтобы было яснее видно, что происходит, припишем каждой перестановке имя, например, положим I = abc, R = acb, Q = bac, V = bca, U = cab и P = cba. Тогда таблица умножения будет выглядеть следующим образом.

Элемент этой таблицы, стоящий в строке X и столбце Y, представляет собой произведение XY, получаемое по правилу «сначала Y, потом X».

Галуа понял, что некое очень простое и очевидное свойство этой таблицы оказывается исключительно важным. Произведение любых двух перестановок само является перестановкой; во всей таблице содержатся только символы I, U, V, P, Q, R. Некоторые меньшие наборы, состоящие из перестановок, обладают тем же «групповым свойством» — произведение любых двух перестановок из набора также представляет собой перестановку из этого набора. Галуа назвал такой набор перестановок группой.

Например, набор [I, U, V] дает меньшую таблицу — таблицу умножения для подгруппы из трех перестановок.

Здесь возникают только те же три символа. В такой ситуации, когда одна группа является частью другой, она называется подгруппой.

Другие подгруппы — а именно [I, P], [I, Q] и [I, R] — содержат только по две перестановки. Имеется также подгруппа [I], состоящая только из I. Можно доказать, что эти шесть подгрупп исчерпывают список подгрупп в группе всех перестановок на шести символах.

Итак, говорит нам (хотя и на несколько ином языке) Галуа, если взять некоторое кубическое уравнение, можно задаться вопросом о его симметриях — тех перестановках, которые сохраняют все алгебраические соотношения между корнями. Предположим, например, что между корнями a и b имеется алгебраическое соотношение a + b = 5. Является ли перестановка R симметрией? Ну, если следовать данному выше определению, то R оставляет a на месте, но меняет местами b и c, так что должно быть выполнено еще и условие a + c = 5. Если оно не выполняется, то R определенно не является симметрией. Если же выполняется, то надо проверить все остальные алгебраические соотношения между корнями, которые могут иметь место, и если R пройдет все эти проверки, то, значит, R — симметрия.

Нахождение того, какие именно перестановки являются симметриями данного уравнения, представляет собой технически сложное упражнение. Но есть что-то, в чем можно быть уверенным вообще без всяких вычислений: набор всех симметрий любого заданного уравнения должен быть подгруппой в группе всех перестановок корней.

Почему? Предположим, например, что и P, и R сохраняют все алгебраические соотношения между корнями. Если взять некоторое соотношение и применить R, то получится верное соотношение. Если далее применить P, то снова получится верное соотношение. Но применение R, а затем P — это то же самое, что применение PR. Следовательно, PR является симметрией. Другими словами, набор симметрий обладает групповым свойством.

Этот простой факт лежит в основе всего сделанного Галуа. Он говорит нам, что с любым алгебраическим уравнением связана некая группа — его группа симметрии; сейчас она называется группой Галуа в честь своего изобретателя. Причем группа Галуа любого уравнения всегда является подгруппой в группе всех перестановок его корней.

Из этого ключевого усмотрения вырастает естественная стратегия атаки. Узнаем, какие подгруппы возникают в каких обстоятельствах. В частности, если уравнение можно решить в радикалах, то группа Галуа этого уравнения должна отражать этот факт в своей внутренней структуре. Далее, задавшись любым уравнением, находим его группу Галуа и проверяем, действительно ли она обладает требуемой структурой. Таким образом мы получаем ответ на вопрос о разрешимости в радикалах.

 

А далее Галуа переформулировал всю задачу с совершенно иной точки зрения. Вместо построения башни с лестницами он вырастил некое дерево.

Не то чтобы он сам называл свой метод «деревом» — так же как не упоминал Абель о «башне» Кардано, однако идею Галуа можно, тем не менее, изобразить как процесс, который снова и снова ответвляется от центрального ствола. Ствол — это группа Галуа данного уравнения. Ветви, веточки и листья — различные подгруппы.

Подгруппы возникают естественным образом, как только мы задумаемся о том, как изменяются симметрии уравнений, когда мы начинаем брать радикалы. Как изменяется группа? Галуа показал, что если извлекается корень p-й степени, то группа симметрии должна разбиться на p различных блоков одинакового размера. (Здесь, как заметил Абель, всегда можно предполагать, что число p простое.) Так, например, некая группа из 15 перестановок может разбиться на 5 групп из 3 элементов каждая или на три группы из 5 каждая. Существенно важно, что блоки должны удовлетворять некоторым очень строгим условиям; в частности, один из них должен сам по себе образовывать подгруппу некоторого специального вида, известного под именем «нормальной подгруппы индекса p». Можно представлять себе, что ствол дерева разбился на p меньших веток, одна из которых соответствует нормальной подгруппе.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134