Истина и красота. Всемирная история симметрии.

А что насчет формулы для четырех квадратов? Она утверждает то же самое для кватернионов. Четырехмерный аналог теоремы Пифагора (да, есть такая штука!) говорит нам, что кватернион общего вида x + iу + jz + kw имеет норму x + y + z + w, а это есть сумма четырех квадратов. Кватернионная норма также мультипликативна, и этим объясняется формула Лагранжа для четырех квадратов.

Вы, наверное, меня уже опередили. Формула Дегена для восьми квадратов имеет аналогичную интерпретацию в терминах октонионов. Октонионная норма мультипликативна.

Здесь происходит что-то весьма любопытное. У нас имеется четыре типа последовательно усложняющихся числовых систем: вещественные, комплексные, кватернионы и октонионы. Их размерности равны 1, 2, 4 и 8. Имеются формулы, утверждающие, что сумма квадратов, умноженная на сумму квадратов, есть сумма квадратов, и эти формулы применимы к 1, 2, 4 или 8 квадратам. Эти формулы тесно связаны с соответствующими числовыми системами. Но еще более интригующей является сама последовательность чисел, которые здесь появляются: 1, 2, 4, 8 — что дальше?

 

Если продолжить последовательность, то весьма разумно было бы ожидать, что мы найдем интересную 16-мерную числовую систему. Действительно, такую систему можно построить естественным путем, называемым процессом Кэли-Диксона. Если применить этот процесс к вещественным числам, то получаются комплексные. Применение к комплексным дает кватернионы. Применение к кватернионам — октонионы. И если теперь двинуться дальше и применить его к октонионам, получатся седенионы — 16-мерная числовая система, а затем алгебры размерности 32, 64 и так далее (на каждом шаге размерность удваивается).

Что же, существует формула для 16 квадратов?

Нет. Норма седенионов не мультипликативна. Формулы произведения для сумм квадратов существуют только тогда, когда квадратов в них 1, 2, 4 или 8. Закон малых чисел снова проявил себя: то, что выглядело как последовательность степеней, стопорится.

Почему? По сути, потому что процесс Кэли-Диксона постепенно разрушает законы алгебры. Всякий раз, как он применяется, получающаяся система ведет себя в чем-то не так хорошо, как предыдущая. Шаг за шагом, закон за законом — и изящные вещественные числа погружаются в анархию. Подробности этого таковы.

Наши четыре числовые системы имеют и другие общие свойства, помимо нормированности. Наиболее впечатляющее — из-за которого они и попадают в класс обобщений вещественных чисел — состоит в том, что это «алгебры с делением». Имеется много алгебраических систем, к которым применимы понятия сложения, вычитания и умножения. Но в наших четырех системах можно, кроме того, делить. Существование мультипликативной нормы делает их «нормированными алгебрами с делением». В течение некоторого времени Грейвс полагал, что его метод перехода от 4 к 8 можно будет повторить, что приведет к нормированным алгебрам с делением размерностей 16, 32, 64 — всех степеней двойки. Но он наткнулся на препятствие с седенионами и начал сомневаться, действительно ли существует 16-мерная нормированная алгебра с делением. Он был прав: нам теперь известно, что существуют только четыре нормированные алгебры с делением, и они имеют размерности 1, 2, 4 и 8. Нет формулы для 16 квадратов, подобной формуле Грейвса для восьми квадратов или формуле Эйлера для четырех квадратов.

Почему? На каждом шаге вдоль по цепочке из степеней двойки новая числовая система теряет некоторую часть структуры. Комплексные числа не упорядочены вдоль прямой. Кватернионы не подчиняются алгебраическому правилу ab = ba — закону коммутативности. Октонионы не подчиняются закону ассоциативности (ab)c = a(bc), хотя и удовлетворяют закону альтернативности (ab)a = a(ba). Седенионы не образуют алгебру с делением и не имеют мультипликативной нормы.

Все это носит намного более фундаментальный характер, чем просто факт «отказа» в процессе Кэли-Диксона. В 1898 году Гурвиц доказал, что единственные нормированные алгебры с делением — это четыре наших старых друга. В 1930 году Макс Цорн доказал, что те же четыре алгебры являются единственными альтернативными алгебрами с делением. Они поистине исключительны.

Происходящее — из разряда тех вещей, которые нравятся чистым математикам с их платоническими пристрастиями. Но единственными по-настоящему важными для остального человечества случаями являются, по-видимому, вещественные и комплексные числа, которые имеют широкие практические применения. Кватернионы проявили себя в ряде полезных, пусть даже эзотерических приложений, но октонионы не попадали в свет рампы прикладной науки. Они, казалось, являют собой некий тупик чистой математики, подобие претенциозной интеллектуальной чепухи, которой и следует ожидать от людей, витающих в облаках.

 

История математики показывает снова и снова, что опасно отбрасывать всякие яркие или красивые идеи лишь на том основании, что они вроде бы не приносят очевидной пользы. К сожалению, это не мешает людям пренебрегать такими идеями, часто именно потому, что они прекрасные или яркие. Чем более «практическими» люди себя полагают, тем в большей степени они склонны поливать презрением математические концепции, возникающие из абстрактных проблем и изобретенные «ради самих себя», а не из проблем реального мира. Чем изящнее концепция, тем больше презрения, как будто бы изящества самого по себе следует стыдиться.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134