Истина и красота. Всемирная история симметрии.

 

Следствия из аксиом Эвклида — длинная, тщательно отобранная цепочка логических построений — простираются необычайно далеко. Например, он доказывает — применяя логику, которая в его дни считалась безукоризненной, — что, коль скоро вы принимаете его аксиомы, вы неизбежно должны заключить следующее.

• Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов двух других его сторон.

• Существует бесконечно много простых чисел.

• Существуют иррациональные числа — такие, которые не выражаются в виде дроби. Примером является квадратный корень из двух.

• Имеется ровно пять правильных тел: тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.

• Любой угол можно точно разделить на две равные части, используя только циркуль и линейку.

• Можно построить правильные многоугольники с 3, 4, 5, 6 , 8, 10 и 12 сторонами, используя только циркуль и линейку.

Я выразил эти «теоремы», как называются любые обладающие доказательством математические утверждения, на современном языке. Язык Эвклида отличался довольно сильно: Эвклид не работал непосредственно с числами. Все, что мы интерпретируем как свойства чисел, формулируется у него в терминах длин, площадей и объемов.

 

Содержание «Начал» разбивается на две основные категории. Имеются теоремы, говорящие нам, что некое утверждение истинно. И имеются конструкции, говорящие нам, как что-либо можно сделать.

Типичная и заслуженно знаменитая теорема — это Предложение 47 Книги I «Начал», широко известное как теорема Пифагора. Она гласит, что самая длинная сторона в прямоугольном треугольнике находится в определенной связи с двумя другими. Но без дополнительных усилий или интерпретации она не дает метода для достижения какой-либо цели.

Теорема Пифагора.

 

Конструкция, существенная для нашего рассказа, содержится в Предложении 9 из Книги I, где Эвклид решает задачу «бисекции» (деления пополам) углов. Эвклидов метод деления угла пополам прост, но остроумен, с учетом ограниченных возможностей, доступных на той ранней стадии развития. Если задан угол (1), образованный двумя отрезками прямых, поместите циркуль в точку пересечения этих отрезков (2) и проведите окружность, которая пересечет отрезки в двух точках, по одной на каждом (черные точки). Теперь проведите (3) две окружности того же радиуса с центрами в полученных точках. Они пересекутся в двух точках (отмечена только одна из них), после чего через них проводится (4) искомая биссектриса (показана точками).

Как разделить угол пополам циркулем и линейкой.

 

Повторяя это построение, можно разделить угол на четыре равные части, на восемь, на шестнадцать — число частей удваивается на каждом шаге, так что мы получаем степени двойки: 2, 4, 8, 16, 32, 64 и так далее.

 

Как я уже говорил, в «Началах» основной аспект, имеющий отношение к нашему рассказу, состоит не в том, что там содержится, а в том, чего там нет. Эвклид не дал никаких методов для решения следующих задач.

• Деление угла точно на три равные части (трисекция угла).

• Построение правильного многоугольника с 7 сторонами.

• Построение отрезка, длина которого равна длине окружности заданного радиуса (выпрямление окружности).

• Построение квадрата, площадь которого равна площади круга заданного радиуса (квадратура круга).

• Построение куба, объем которого ровно вдвое больше объема заданного куба (удвоение куба).

Иногда говорится, что сами греки воспринимали эти упущения как недостатки в монументальном труде Эвклида и посвятили много сил их исправлению. Историки математики нашли очень мало свидетельств в поддержку этих утверждений. В действительности греки были в состоянии решить все перечисленные выше задачи, но для этого им приходилось использовать методы, находившиеся за пределами установленных Эвклидом рамок. Все эвклидовы построения выполнялись циркулем и линейкой без делений. Греческие геометры могли бы выполнить трисекцию угла, используя специальные кривые, называемые коническими сечениями; они могли бы квадрировать круг, используя другую специальную кривую, называемую квадратрисой. С другой стороны, они, кажется, не понимали, что если можно выполнить трисекцию угла, то можно построить и правильный семиугольник (да, я имею в виду именно семиугольник; девятиугольник построить несложно, а вот для семиугольника потребуется очень хитрое построение). На самом деле они, похоже, вообще не изучали следствий, вытекающих из трисекции угла. Душа их, по-видимому, не лежала к таким исследованиям.

Позднейшие математики воспринимали то, что было опущено у Эвклида, в ином свете. Вместо поисков новых средств для решения этих задач они озаботились вопросом о том, чего можно достичь, используя ограниченные средства, выбранные Эвклидом, — циркуль и линейку (причем без всякого жульничества с нанесенными на нее делениями: греки знали, что «прием вставки» со скользящей линейкой с делениями позволяет эффективно и точно разделить угол на три части; один такой метод был изобретен Архимедом). Нахождение того, что можно сделать, а чего нельзя, а также доказательство этого заняли долгое время. К концу 1800-х годов стало окончательно ясно, что ни одну из приведенных выше задач нельзя решить, используя только циркуль и линейку.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134