Системные описания в психологии

II. 2. 7. Тетрады и дальнейшее разбиение множеств. Тетрады могут образовываться путем двух последовательных дихотомий по разным основаниям, раздвоения среднего элемента триады и другими способами. Как тетраду можно рассматривать совокупность отрезка, разделенного на три части. Диады имеют одинаковую структуру, триады могут быть и одномерными и двухмерными, тетрады могут быть также и трехмерными (по положению своих компонентов в системном описании). Примерами тетрад могут служить тетрахорды в музыке. Б. Г. Ананьев рассматривал четыре вида отношений: внешне-внешние, внутренне-внутренние, внутренне-внешние и внутренне-внутренние [5]. Тетрада конструктивно менее прочна, чем диада и тетрада, поэтому для ее усиления часто бывает необходим пятый, объединяющий компонент.

Процесс разбиения множества на подмножества может быть продолжителен. Например, путем прогрессивного расслоения кольца оно может быть разбито на пять, шесть и вообще любое число колец. В том случае, когда образовавшееся множество компонентов исходного целого однородно и они могут быть упорядочены по целому основанию, мы можем получить упорядоченное множество, одномерный ряд, который воспринимается как единица опыта, хотя содержит число элементов больше четырех (множество годичных колец дерева, множество химических элементов в одном периоде таблицы Менделеева). Но когда компоненты целого объекта неоднородны, а отношения между ними разнокачественны, при восприятии такого объекта начинают давать себя знать ограничения восприятия, описанные выше (см. раздел I. 3). В этом случае при числе компонентов больше четырех они должны группироваться таким образом, чтобы число групп не превышало четырех. Именно этим объясняется определяющее значение диад, триад и тетрад при анализе целостных объектов.

II. 3. СИСТЕМНЫЙ АНАЛИЗ («ИЗ ВСЕГО — ОДНО»)

II. 3. 1. Объективная необходимость объединения. Существование множества разнообразных промежуточных данных об одном психологическом явлении, полученных разными авторами, на различных языках и в различных формах, ставит перед нами задачу синтеза этого многообразия в целостное представление на основе адекватного системного описания. Аналогичная задача возникает при необходимости систематизировать множество психических явлений, например психических состояний, а также множества методологических принципов.

Объективная сложность вещей и ограниченность восприятия человека приводит к тому, что они признаются не сразу во всей их сложности и противоречивости. В. И. Ленин по этому поводу писал: «человек не может охватить=отразить=отобразить природы всей, полностью, ее «непосредственной цельности», он может лишь вечно приближаться к этому, создавая абстракции, законы, научную картину мира и т. д. и т. п.». *(*Там же, с. 154.) Кроме того, для описания используются конкретные языки (в широком смысле этого слова), а возможности любого языка ограничены, каждый имеет свои достоинства и свои недостатки. Эти объективные причины приводят к тому, что описания, создаваемые с познавательными, практическими и учебными целями, могут, а зачастую и должны быть множественными.

Отдельные описания находятся между собой в различных отношениях: изоморфизма (тождества, эквивалентности), гомоморфизма, включения, пересечения, дополнительности. Описания могут быть эквивалентны не в целом, а в каком-либо одном определенном отношении. Описания могут быть даже противоречивыми, если они отражают реальные противоречия объекта. В каждом конкретном случае тип отношений между описаниями должен быть установлен (обоснован или доказан).

Примерами эквивалентных описаний могут служить описания в различных системах координат и масштабов, матриц и соответствующий ей граф и др. Однако описания, даже эквивалентные по отношению к сущности явления, неэквивалентны по отношению к воспринимающему субъекту и к цели их применения.

II. 3. 2. Принципы и факторы объединения подмножеств. Для объединения подмножеств используются операции объединения, пересечения и дополнения. Подмножества могут рассматриваться как элементы, имеющие в качественные и количественные характеристики. На основе принципа близости может осуществляться группировка подмножеств (элементов) по сходству, на основе отношения порядка они могут объединяться в ряды, упорядочиваться. Если подмножества имеют числовые характеристики, то они могут быть объединены одной количественной закономерностью. В многомерном пространстве объединяющей основой может служить система ортогональных осей (система координат), относительно которой располагаются подмножества.

В физических реализациях объединение по близости означает прежде всего объединение по близости в пространстве и времени, затем по близости в пространстве наблюдаемых признаков. Группировка и упорядочение множества объектов на основе отношений эквивалентности и порядка являются идеальным случаем и в практике научных исследований встречается довольно редко. Обычно подмножества оказываются пересекающимися, размытыми. Само множество в большинстве случаев открытое, его изменение приводит к изменениям в преимущественной группировке и к изменению отношений между группировками. Как правило, множество, подлежащее группировке и упорядочиванию, является множеством характеристик, признаков реальных объектов. В биологии это множество характеристик клеток, видов организмов, биогеоценозов, по отношению к которым главной задачей выступает систематизация. Для психологии это множество характеристик структур, функций, свойств одного вида, по отношению к которому главными задачами являются задачи типологии его свойств, изучение структур и их изменения в онтогенезе.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76