haskell-notes

сходятся обе стрелки. Можно проверить, что это действительно категория.

Если в этой категории есть начальный объект, то мы будем называть его суммой объектов A и B. Две

стрелки, которые содержит этот объект мы будем называть inl и inr, а общий объект в котором эти стрелки

сходятся будем называть A + B. Теперь если мы выпишем определение для начального объекта, но вме-

сто произвольных стрелок и объектов подставим наш конкретный случай, то мы получим как раз исходное

определение суммы.

Начальный объект ( inl : A > A + B, inr : B > A + B) ставит в соответствие любому объекту

( f : A > C, g : B > C) стрелку h : A + B > C такую, что выполняются свойства:

236 | Глава 15: Теория категорий

A

inl

A + B

inr

B

h

f

g

C

А как на счёт произведения? Оказывается, что произведение является дуальным понятием по отношению

к сумме. Его иногда называют косуммой, или сумму называют копроизведением. Дуализируем категорию,

которую мы строили для суммы.

У нас есть категория A и в ней выделено два объекта A и B. Объектами новой категории будут пары

стрелок ( a 1 , a 2), которые начинаются в общем объекте C а заканчиваются в объектах A и B. Стрелками в

этой категории будут стрелки исходной категории h : ( e 1 , e 2) > ( d 1 , d 2) такие что следующая диаграмма

коммутирует:

A

B

e 1

d 2

d

e

1

2

D

E

f

Композиция и тождественные стрелки позаимствованы из исходной категории A. Если в этой категории

существует конечный объект. То мы будем называть его произведением объектов A и B. Две стрелки этого

объекта обозначаются как ( exl, exr), а общий объект из которого они начинаются мы назовём A?B. Теперь

распишем определение конечного объекта для нашей категории пар стрелок с общим началом.

Конечный объект ( exl : A?B > A, exr : A?B > B) ставит в соответствие любому объекту категории

( f : C > A, g : C > B) стрелку h : C > A ? B. При этом выполняются свойства:

A

exl

A ? B

exr

B

h

f

g

C

Итак мы определили сумму, а затем на автомате, перевернув все утверждения, получили определение

произведения. Но что это такое? Соответствует ли оно интуитивному понятию произведения?

Так же как и в случае суммы в теории категорий мы определяем понятие, через то как мы можем с ним

взаимодействовать. Посмотрим, что нам досталось от абстрактного определения. У нас есть обозначение

произведения типов A ? B. Две стрелки exl и exr. Также у нас есть способ получить по двум функциям

f : C > A и g : C > B стрелку h : C > A ? B. Для начала посмотрим на типы стрелок конечного объекта:

exl : A ? B > A

exr : A ? B > B

По типам видно, что эти стрелки разбивают пару на составляющие. По смыслу произведения мы точно

знаем, что у нас есть в A ? B и объект A и объект B. Эти стрелки позволяют нам извлекать компоненты

пары. Теперь посмотрим на анаморфизм:

[( f, g )] : C > A ? B

f : C > A, g : C > B

Эта функция позволяет строить пару по двум функциям и начальному значению. Но, поскольку здесь мы

ничего не вычисляем, а лишь связываем объекты, мы можем по паре стрелок, которые начинаются из общего

источника связать источник с парой конечных точек A ? B.

При этом выполняются свойства:

[( f, g )] ; exl = f

[( f, g )] ; exr = g

Эти свойства говорят о том, что функции построения пары и извлечения элементов из пары согласованы.

Если мы положим значение в первый элемент пары и тут же извлечём его, то это тоже само если бы мы не

использовали пару совсем. То же самое и со вторым элементом.

Сумма и произведение | 237

15.8 Экспонента

Если представить, что стрелки это функции, то может показаться, что все наши функции являются функ-

циями одного аргумента. Ведь у стрелки есть только один источник. Как быть если мы хотим определить

функцию нескольких аргументов, что она связывает? Если в нашей категории определено произведение объ-

ектов, то мы можем представить функцию двух аргументов, как стрелку, которая начинается из произведе-

ния:

(+) : N um ? N um > N um

Но в лямбда-исчислении нам были доступны более гибкие функции, функции могли принимать на вход

функции и возвращать функции. Как с этим обстоят дела в теории категорий? Если перевести определение

функций высшего порядка на язык теории категорий, то мы получим стрелки, которые могут связывать дру-

гие стрелки. Категория с функциями высшего порядка может содержать свои стрелки в качестве объектов.

Стрелки как объекты обозначаются с помощью степени, так запись BA означает стрелку A > B. При этом

нам необходимо уметь интерпретировать стрелку, мы хотим уметь подставлять значения. Если у нас есть

объект BA, то должна быть стрелка

eval : BA ? A > B

На языке функций можно сказать, что стрелка eval принимает функцию высшего порядка A > B и зна-

чение типа A, а возвращает значение типа B. Объект BA называют экспонентой. Теперь дадим формальное

определение.

Пусть в категории A определено произведение. Экспонента – это объект BA вместе со стрелкой eval :

BA ? A > B такой, что для любой стрелки f : C ? A > B определена стрелка curry( f ) : C > BA при

этом следующая диаграмма коммутирует:

C

C ? A

f

curry( f )

( curry( f ) , id)

BA

BA ? A

B

Давайте разберёмся, что это всё означает. По смыслу стрелка curry( f) это каррированная функция двух

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162