Блеск и нищета К.Э. Циолковского

 

А вот скорости любой другой поверхности сферы радиуса Н во столько раз меньше скорости пластинки, во сколько поверхность слоя Н больше площади поверхности пластинки, т.е.

 

где V – скорость сферического слоя жидкости радиусом Н, V – скорость пластинки радиусом r, нормальная к потоку.

 

Далее он вычисляет работу:

 

где: dm – масса сферического слоя толщиною в dH (если это масса, то в (3) лишнее g, поэтому это – вес),

 

но dm = 4 ? d H dH;

 

с учетом (2), он получил:

 

интегрируя, он получил:

 

Если Н = r, то работа равна той, которая необходима, чтобы сообщить сфере постоянную скорость Vn, т.е.

 

(Тут наблюдается некоторая непоследовательность: то он использует представление о равенстве поверхностей сферы и пластинки, т.е. фактически исключает сферу из рассмотрения, то опять ее вводит).

 

Отсюда:

 

При Н = ? , что соответствует всей массе приводимой в движение жидкости, он получил:

 

И последний момент: он заменяет круглую пластинку прямоугольной так, что ? r = ab и чтобы она «была не очень продолговатой». Тогда:

 

Таким образом, К.Э. Циолковский представил еще одну модель обтекания пластинки потоком жидкости (движения пластинки в потоке). Эта модель была альтернативной ньютоновской и отличалась от нее способом учета массы жидкости.

 

Если у Ньютона последняя соответствовала ее объему, равному произведению площади пластинки на ее скорость, то у К.Э. Циолковского она занимает сферу, в которой скорость меняется от скорости пластинки до нуля.

 

В целом внешний вид формул (1) и (5) был подобен, поскольку последняя имела всего лишь лишний множитель vab , да постоянный коэффициент, видимо, был иным:

 

Казалось бы, что теперь наступил момент сравнения точностей формул (1) и (5), их сравнения с экспериментальными данными. Однако дальнейшие действия К.Э. Циолковского остаются непонятными. Он почему-то считал, что формула (1) пригодна для установившегося движения жидкости, а его формула (5) – для неустановившегося. При этом он не объясняет, что он имеет в виду, по каким параметрам его поток еще не установился. Вся логика его рассуждений в этом контексте ничем не отличалась от ньютоновской и его модель касалась того же потока, что и у Ньютона, т.е. стационарного, установившегося.

 

Считая эти формулы принципиально отличающимися, он не останавливается на их сравнении и переходит к решению следующей задачи. Он ставил ее так:

 

«Определим теперь силу давления воздуха или, вообще, жидкости на прямоугольную пластинку, одна сторона а которой перпендикулярна направлению ее параллельного движения, а другая b параллельна ему» [с. 25].

 

При такой теоретической модели он, по логике вещей, должен был рассматривать силу сопротивления и силу трения (см. рис. 2), т.е. два потока воздуха, один из которых был бы нормален к пластинке и имел скорость Vn, а другой, создающий трение, направлялся вдоль пластинки со скоростью Vp.

 

Однако К.Э. Циолковский силу трения вообще не замечает (а не пренебрегает ею из-за малости или иных каких-либо соображений). Он считал, что за счет параллельного движения пластинки будет увеличиваться нормальное давление на нее за счет захвата ею в единицу времени, большего количества воздуха, который будет только страгиваться с места в соответствии с формулой (5). Поскольку изложить эту идею корректно представляется затруднительным, дадим слово самому К.Э. Циолковскому. Он писал:

 

«Действительно, при одной лишь нормальной скорости, прямоугольник сообщает известное движение воздуху близ площади величиной а Ь; при поступательном [параллельном] же движении тот же прямоугольник в одну секунду сообщает движение воздуху близ поверхности длиной в Vp и шириной в а, т.е. площади, величиной в Vp а, которая больше предыдущей в

 

Каждой части этой воздушной полосы прямоугольник сообщил некоторое движение.

 

Итак, обозначая силу нормального давления на плоскую пластинку, происходящую от этой причины через F, найдем на основании формул (5) и (6), что секундная работа равна:

 

(Мы здесь заменили только номера формул на принятые в настоящей работе – Г.С.)

 

Обратим внимание, его пластинка увеличилась в размере в Vp/b раз, и вся она страгивает с силой F (в соответствии с (5) или (7)) воздух с места. Для этого «придуманного» К.Э. Циолковским случая появляется зависимость F от va/b. Это, конечно же, совсем не та зависимость, которую подразумевали до сих пор историки аэродинамики, говоря о зависимости силы сопротивления от удлиненности пластинки.

 

Далее. Пластинка, стронув таким образом поток с места, продолжает его двигать и дальше в установившемся режиме, когда нормальная сила сопротивления вычисляется по принятой в то время обычной формуле (1).

 

Таким образом, у К.Э. Циолковского – две силы сопротивления, причем обе нормальные, но одна из них возникает у него при параллельном движении пластинки, страгивающей слой воздуха с места, а вторая двигает этот слой находящийся уже в движении. Казалось бы, что при такой модели формулы (1) и (7) должны использоваться по отдельности, каждая при своем режиме движения, но он делает следующий совершенно непонятный шаг. Он писал:

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104