Природа времени: Гипотеза о происхождении и физической сущности времени

Следует заметить, что к моменту эксперимента Аспека Бором уже была разработана теория, включающая… «нелокальные» эффекты. То есть теория, как бы допускающая в результате «чего-то» распространение информации со скоростью, превышающей скорость света. Эйнштейн, со своей стороны, иронизируя, считал, что такие представления — это не более, чем «призрачное действие на расстояние».

С тех пор прошло несколько десятилетий, но четкого однозначного объяснения парадокса ЭПР не существует. А ведь есть и другие парадоксы, связанные со скоростью света. И, естественно, возникает вопрос, возможно ли некое предположение о природе феномена с позиции гипотезы локально-когерентного времени.

Рассмотрим вначале (из тактических соображений) проблему дуализма элементарных частиц, а затем выскажем гипотетическое допущение о природе парадокса ЭПР.

Элементарные частицы, как известно, способны проявлять и свойства материальных точек (корпускул), и волновые свойства. Ученые открыли много закономерностей, связанных с этим парадоксальным явлением квантового мира, но до сих пор не могут ответить на вопрос, каков механизм двойственной природы элементарных частиц, например света. Почему фотоны, электроны и др. ведут себя именно так?

Я вынужден привести большие выдержки из лекции Нобелевского лауреата Р. Фейнмана «Вероятность и неопределенность — квантово-механический взгляд на природу»{43}. В этой лекции Фейнман говорит: «Я собираюсь придумать один эксперимент и рассказать вам сначала, что получилось бы при таких условиях, если бы у нас были частицы, затем — что было бы, если бы это были волны, и, наконец, что происходит на самом деле в системе, где есть электроны или фотоны». Фейнман продолжает: «Я разберу только этот эксперимент, который специально придуман таким образом, чтобы охватить все загадки (выделено мною. — А.Б.) квантовой механики и столкнуть вас со всеми парадоксами, секретами и странностями природы… любой другой случай в квантовой механике всегда можно объяснить, сказав: «Помните наш эксперимент с двумя отверстиями?..» Вот я и стараюсь рассказать… об опыте с двумя отверстиями…

Начнем с истории изучения света. Сначала предполагалось, что свет очень похож на дождь из частиц или пули, выпущенные из ружья. Однако последующие исследования показали, что такое представление неверно, и на самом деле свет ведет себя как волна… Затем уже в XX веке… вновь стало казаться, что в очень многих случаях свет ведет себя как поток частиц. Наблюдая фотоэлектрический эффект, можно подсчитать число этих корпускул… Но дальнейшие опыты, например, с электронной дифракцией, показали, что они ведут себя как волны… Все нарастающая путаница была разрешена в 1925–1926 гг. открытием точных уравнений квантовой механики… Но как я могу назвать такой характер поведения?» И после этого риторического вопроса Фейнман продолжает: «Электроны ведут себя в указанном отношении точно также, как и фотоны… необычным образом, но зато одинаково…»

«Я не собираюсь ничего избегать, — говорит Фейнман. — Я просто снимаю покровы с природы, с ее наиболее элегантных и трудноуловимых форм…»

Далее идет описание экспериментов (рис. 1). «Пусть у нас имеется источник пуль — пулемет, например, и перед ним установлен броневой экран с отверстием, пропускающим пули… на большом расстоянии от первого поставили другой броневой щит с двумя отверстиями 1 и 2… На большом расстоянии от второго щита поставим еще и третий, позволяющий устанавливать в разных местах детектор (для пуль это будет… ящике песком), в котором пули застрянут…

Рис. 1. Опыт с пулями

Теперь я буду проделывать такие опыты: … буду устанавливать свой детектор… в разных точках третьего щита и затем подсчитывать, сколько пуль попадет в него. При этом я буду измерять расстояния между ящиком и какой-нибудь… точкой на третьем щите, назову это расстояние X и постараюсь выяснить, что происходит, если… ящик передвигать вверх и вниз… будем предполагать, что пулемет сильно дрожит и качается.

Первое, что мы заметим в… опыте с пулями, это то, что все здесь происходит дискретными порциями. Например, энергия, поглощенная мишенью. Она может увеличиваться только скачком на величину энергии одной пули… если взять два ящика, то в них не может войти одновременно по одной пуле… каждая пуля — это нерасчленяемая и опознаваемая порция, теперь я хочу выяснить, сколько пуль попадет в разные участки мишени… возьмем среднее число пуль, попавших в ящик за час, и назовем его вероятностью попадания…

В результате у меня получатся плавные кривые… (одну) я обозначу N (она) описывает число попаданий (при открытом отверстии 1), если отверстие 2 закрыто броневой заслонкой, и… N описывающей число попаданий при закрытом отверстии 1. А это позволяет обнаружить очень важный закон: число попаданий при двух открытых отверстиях представляет собой простую сумму числа попаданий через одно отверстие 1 и одно отверстие 2, рассматривая кривую N, мы можем заметить… это утверждение… (его) мы станем… обозначать словами «отсутствие интерференции».

То есть N = N + N (отсутствие интерференции)».

Далее Р. Фейнман описывает вторую часть эксперимента, где вместо пуль используется вода — тело, которому безусловно присущи волновые свойства (рис. 2). «Вместо пулемета — нечто вызывающее равномерное волнение — рябь, вместо второго броневого щита — доска с двумя отверстиями, а за ней детектор. Детектор должен обнаружить степень волнения воды…»

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114