Рис. 2. Опыт с водой
Фейнман продолжает: «Итак, мы собираемся измерить интенсивность волнения или, точнее говоря, энергию, генерируемую волнением в некоторой точке… Выяснить, на что похожи кривые l, и l, можно, закрывая по очереди одно из отверстий во втором экране и оставляя другое открытым…
Как нетрудно заметить, l имеет тот же характер, что и Nв задаче с пулями, а lпохожа на N..
…Кривая l, соответствующая двум открытым отверстиям, показана на рис. 2. Это очень интересная и внешне сложная кривая… Дело здесь в том, что волнение образуется из последовательности гребней и впадин, идущих из отверстия 1, и другой последовательности гребней и впадин, идущих из отверстия 2».
Пропустим подробное пояснение механизма взаимодействия гребней и впадин у волн в связи с изначальной подготовленностью читателя.
Р. Фейнман продолжает: «Вот поэтому мы и получим кривую, на которой за всплеском интенсивности следует провал, потом опять всплеск, опять провал… и все это в зависимости от характера «интерференции» гребней и впадин», т. е. в зависимости от наложения волн.
И снова и снова г-н Фейнман обращает наше внимание на то, что если волны поочередно распространяются только через одно из открытых отверстий во втором экране, то кривые и l2, характеризующие волнение, имеют такой же вид, как и кривые N, и N, характеризующие количество пуль, пролетевших через каждое из двух отверстий. Но кривая l12 (суммарная) резко отличается от суммарной кривой N Получается, что l ? l + l (присутствие интерференции).
Наконец, Фейнман рассказывает о реальном эксперименте: «В качестве источников электронов возьмем накаленную нить, в качестве экранов — вольфрамовые пластинки с отверстиями, а в качестве детектора — любую электрическую систему с чувствительностью, достаточной… чтобы зарегистрировать заряд, приносимый электроном». Фейнман обращает внимание на то, что электроны излучаются поштучно (дискретно), как пули. И кривые, которые характеризуют вероятность попадания электронов через каждое одно из двух отверстий, ничем не отличаются от кривых в опыте с пулями, т. е. тут электроны ведут себя как корпускулы (N и N).
Наконец, соответствующим образом подготовив нас, выдающийся физик констатирует: «Тем не менее, если открыть оба отверстия, мы не получим суммы N1, + N2 так что интерференция действительно есть (N + N ? N)».
Р. Фейнман заключает: «Итак, электроны попадают в детектор порциями, как если бы это были частицы, но вероятность попадания этих частиц при двух открытых отверстиях определяется по тем же законам, по каким определяется интенсивность волнения воды. Именно в этом смысле можно говорить, что с одной точки зрения электрон ведет себя как частица, а с другой… — как волна, он ухитряется одновременно быть двумя совершенно разными понятиями».
Так и не сняв покров тайны с природы, г-н Фейнман ставит скромную точку: «Вот и все, что можно сказать по этому поводу».
Впрочем, чуть раньше он предостерегает обывателей от попытки чрезмерно суетиться. «Кажется, если подумать хорошенько, всегда можно найти какое-то объяснение: например, электроны могут возвращаться обратно через те же отверстия, а затем проходить через них еще раз… или возникает возможность расщепления электрона на два пролетающих через разные отверстия, или что-нибудь в этом роде, как-то объясняющее это явление. Но пока еще никому не удалось придумать удовлетворительное объяснение такого рода…»
И передо мной возникает проблема, так сказать, «быть или не быть». Не претендуя, естественно, на истину в последней инстанции, более того, не надеясь на особо удовлетворительное объяснение, я все-таки попытаюсь дать объяснение этому парадоксальному явлению природы с позиции гипотезы локально- когерентного времени.
Как уже отмечалось, все объекты Вселенной, взаимодействуя, обмениваются энергией и массой и поэтому поглощают или излучают псевдопотоки времени. При этом любое взаимодействие на уровне элементарных частиц приводит к изменению собственного времени частиц. Частицы способны существовать с собственным временем, отличным от квазикогерентного времени системы, в которой они находятся.
По мнению американского физика Г. Степпа, элементарные частицы, по существу, — «это среда, распространяющаяся вовне на другие объекты». Вслед за В. Олейником можно утверждать, что движущийся электрон — это сгусток заряженной материи, имеющий торсионную компоненту поля, постоянно связанную с электроном.
Что происходит с электронами в эксперименте, о котором поведал нам Фейнман? Возбужденные электроны генерируются нитью накаливания и пролетают пространство от источника до второй вольфрамовой пластинки с двумя отверстиями через среду, наполненную частицами, ядрами, атомами и молекулами, которые находятся в состоянии покоя, т. е. в состоянии, в котором они характеризуются массой покоя и низшими уровнями энергии.
Далее, электроны, поскольку они «вырываются» из нити накаливания, отличаются от «спокойных» электронов тем, что они возбуждены нагревом. Они должны характеризоваться более высокой внутренней энергией, и это должно было бы повысить темп их собственного времени. Однако, одновременно с этим, «вырванные» из нити накаливания электроны обладают повышенной кинетической энергией и, следовательно, повышенной (в соответствии с теорией относительности) полной (релятивистской) массой. Это должно было бы понизить их темп собственного времени.