Выражение «стрела времени» столь же прекрасно по форме, сколь и сомнительно по содержанию.
Завершая эту основную главу, я хочу подчеркнуть, что «новизна» предлагаемой гипотезы не является пионерской в том смысле, что, начиная с глубокой древности, идеи о связи времени и материи, о зависимости времени от материальных воздействий постепенно овладевали умами исследователей. Один из главных выводов моей гипотезы о том, что времени вообще нет вне материальных взаимодействий, — это логическое завершение долгого пути, которым следовали Платон, Лукреций, Лейбниц, Бошкович и др., конечно, Эйнштейн и Пригожин, а также менее великие наши современники: В. Копылов, Ю. Белостоцкий, Ф. Канарев, В. Марков и др. И, разумеется, каждый из них гордо нес (и несет) свою долю груза и свое представление о том, что же он несет.
Возможно, сегодня в понимании происхождения и сущности времени мы (т. е. все, кто четко и последовательно придерживается реляционных позиций) достигли того уровня, когда можно сказать: «Хватит искать черную кошку втемной комнате, когда ее там нет».
Человечество слишком долго искало не то и не там, и в этом, вероятно, главная причина затянувшегося непонимания сущности времени.
Основные выводы по второй главе:
1. Внутренняя энергия любой материальной системы в условиях слабого и неизменного гравитационного поля является главным фактором, формирующим собственное время системы.
2. Собственное время каждой материальной системы Вселенной является мерой плотности внутренней энергии и гравитационного воздействия в этой системе и зависит от скорости ее движения относительно выбранной системы отсчета.
Физический смысл времени заключается в том, что время — это энергетическое состояние материи, ее проявление и отражение в определенном гравитационном поле. Причинная последовательность движений материи определяет так называемое направление хода времени, а темп времени определяется энергопроявлением материи в процессе ее взаимодействия в гравитационном поле.
Глава 3.
НЕКОТОРЫЕ СЛЕДСТВИЯ ГИПОТЕЗЫ ЛОКАЛЬНО- КОГЕРЕНТНОГО ВРЕМЕНИ
Лучше опираться на гипотезу, которая со временем рискует быть признана неудачной, чем вообще ни на что не опираться.
Дмитрий Менделеев
3.1. Возможно ли возвращение здравого смысла квантовой механике?
При входе в один старинный английский университет некогда висел плакат, рассчитанный, видимо, на абитуриентов и первокурсников: «Будьте осторожны! Физика может свести с ума!»
В этом оригинальном предупреждении проявилось утвердившееся постепенно на протяжении XX века представление о том, что к микромиру не следует подходить с позиций здравого смысла. Ибо там нормальная логика нарушена, там властвует логика «безумного» мира.
Пожалуй, окончательно стало ясно, что с физикой микромира «не все в порядке», когда Вернер Гейзенберг (1901–1976) обнародовал свой принцип неопределенности. Но, разумеется, первые симптомы появились гораздо раньше. Пожалуй, еще в XVII веке, когда вопреки интуиции и логике оказалось, что свет обладает и свойствами частицы (корпускулы, как считал Ньютон), и свойствами волны (так считал Гюйгенс). Впрочем, о том, что носитель света может одновременно вести себя и как частица, и как волна, тогда еще не догадывались.
Соотношение неопределенности Гейзенберга выражает фундаментальное положение квантовой механики и заключается в том, что такие переменные, как координата и импульс, энергия и время (и некоторые другие), не могут одновременно иметь точно определенные значения. Например, если у электрона определяют его положение (координату) с точностью Dx, то определить его импульс можно с неопределенностью, только большей, чем
Соотношение неопределенности для энергии и времени имеет вид:
где ?Е — неопределенность энергии и ?t — время пребывания частицы в данном состоянии.
Иными словами, как бы мы ни старались точнее определить, например, импульс электрона, у нас ничего не получится, более того, чем с большей точностью и тщательностью и на более совершенном приборе мы определим координату электрона, тем больше становится неопределенность в измерении величины его импульса.
Как выразился один известный автор: «Лучшие умы… пытались придумать такой прибор, который смог бы измерить координату тела и его импульс с точностью, большей, чем позволяет соотношение неопределенностей, но никому не удалось это сделать. Сделать это просто нельзя. Таков закон природы». А собственно говоря, почему? Какие реальные (природные) процессы происходят в микромире и почему они происходят именно так, что порождают именно такой закон природы и, соответственно, такое соотношение неопределенности?
Иногда физики объясняют природу принципа неопределенности тем, что, как только, определяя положение электрона, мы воздействуем на него хотя бы одним квантом энергии, между частицами происходит взаимодействие — мы как бы «сдвигаем» электрон, что и вносит размазанность в точность определения его импульса. Это, может быть, и правильно, но природа принципа неопределенности этим утверждением объясняется недостаточно, точнее, никакие объясняется. Ибо если мы «сдвинем» электрон механически, то почему бы наряду с определением его координаты не измерить и его импульс?