Природа времени: Гипотеза о происхождении и физической сущности времени

По моему убеждению, к этому объяснению необходимо добавить следующее: воздействуя на электрон квантами энергии, мы изменяем собственное время электрона, тем самым мы изменяем разницу между темпом времени на часах электрона и темпом собственного времени лаборатории, и поэтому измерение положения электрона и его импульса происходит в разные моменты времени. Может быть, в этом сущность явления? Тогда чем длиннее интервал времени между этими моментами, тем больше неопределенность.

Между прочим, только что высказанное допущение содержится (в непроявленном виде) в самом определении принципа неопределенности. Спрятано оно в соотношении между энергией и временем. Из него следует, что частица не может находиться в одном состоянии меньшее время, чем Dt при неопределенности энергии, равной или меньшей, чем DE. На мой взгляд, из этого следует, что скачки во времени — энергии порождены несовпадением моментов времени по часам различных частиц (или по часам одной из частиц и по часам лаборатории) при изменении собственного времени хотя бы у одной из частиц в момент взаимодействия.

От такого понимания природы возникновения соотношения неопределенности, конечно, не изменится само проявление принципа — его количественные соотношения. Это твердо установленная закономерность.

А между прочим, почему, чем с большей точностью и тщательностью на более совершенном приборе мы определяем координату электрона, тем больше становится неопределенность в измерении его импульса?

Потому, что наиболее совершенный прибор — это прибор с лучшей разрешающей способностью, а это предполагает воздействие, например, на электрон с большей частотой и, следовательно, с большей энергией. Большая порция энергии, приложенная к электрону, значительнее изменяет темп его собственного времени и тем самым значительнее изменяет интервал между моментами времени, в которые происходит измерение координаты электрона и его импульса. И от этой закономерности нельзя избавиться. Даже если воздействовать на электрон при измерении его координаты всего одним квантом энергии, имеющим минимальную величину. Отношение энергии волны к ее частоте всегда равно постоянной Планка (E = hn, где n — частота).

Именно поэтому соотношение неопределенности не может быть меньше этой постоянной. Другое дело, что, рассматривая механизм возникновения соотношения неопределенности с позиций гипотезы локально-когерентного времени, можно прогнозировать, когда это соотношение будет стремиться к минимуму. Тогда и только тогда, когда интервал времени между моментами, в которые фактически происходит определение координаты электрона и его импульса, будет минимальным…

Можно даже постараться представить себе мысленный эксперимент. Нужно при очередной попытке «обойти» соотношение неопределенности, установить, насколько при измерении координаты электрона изменяется темп его собственного времени, и ровно на такую же величину, и с тем же знаком, и в то же мгновение изменить темп собственного времени прибора (и часов) лаборатории. Тогда, если скачки во времени окажутся синхронными, может быть, и удастся то, что до сих пор никому не удавалось, — совместить моменты времени двух разноместных событий с участием подопытной частицы и лабораторного прибора. И, таким образом, свести к минимуму соотношение неопределенности. Впрочем, похоже, что такой эксперимент — нереален…

Несмотря на то, что за минувшие 70 лет физики вполне освоили соотношение неопределенности и широко используют его как один из основных «инструментов» познания микромира, такой выдающийся теоретик, как лауреат Нобелевской премии Ричард Фейнман, позволяет себе такую фразу: «…Мне кажется, я смело могу сказать, что квантовой механики никто не понимает». Это немного похоже на кокетство, тем более, что заявлено в публичной лекции, но смысл фразы вполне определенный — «квантовая физика и сегодня сталкивается с целым рядом непонятных явлений» {43}.

Одна из наиболее острых проблем — это «мгновенное дальнодействие» — парадоксальная ситуация, когда материальные тела (и не только элементарные частицы) вдруг проявляют себя как объекты, скорость движения которых превышает скорость света или приближается к ней.

Для описания широко известного (классического) спора — событий почти драматических — воспользуемся книгой английского ученого Поля Девиса {15}.

Наряду с создателями квантовой теории Гейзенбергом и Шредингером едва ли не главным поборником новой физики был Нильс Бор. Напротив, Эйнштейн, хотя и сам участвовал в создании квантовой теории, считал, что она либо ошибочна, либо истинна наполовину. Эйнштейн утверждал, что «безумие» атомного мира не является фундаментальным свойством, что это лишь фасад, за которым «безумие» уступает место здравому смыслу.

Великий Альберт Эйнштейн с завидным упорством продолжал свои атаки на квантовую неопределенность, пытаясь придумать новые мысленные эксперименты, которые бы обнаружили изъян в официальной версии, одним из сторонников которой был не менее великий Нильс Бор. Не раз дел о доходил о до публичных диспутов. И каждый раз Бор отвергал аргументы Эйнштейна.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114